Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T02:14:55.613Z Has data issue: false hasContentIssue false

Modeling of laser–plasma interaction on hydrodynamic scales: Physics development and comparison with experiments

Published online by Cambridge University Press:  01 June 2004

S. WEBER
Affiliation:
Centre Lasers Intenses et Applications, Unité mixte de recherche 5107 Centre national de la recherche scientifique, Université Bordeaux 1, Commissariat à l'énergie atomique, Talence Cedex, France Département de Physique Théorique et Appliquée, Commissariat à l'énergie atomique/DIF, Bruyères-le-Châtel Cedex, France
G. RIAZUELO
Affiliation:
Département de Physique Théorique et Appliquée, Commissariat à l'énergie atomique/DIF, Bruyères-le-Châtel Cedex, France
P. MICHEL
Affiliation:
Département de Physique Théorique et Appliquée, Commissariat à l'énergie atomique/DIF, Bruyères-le-Châtel Cedex, France Laboratoire pour l'Utilisation des Lasers Intenses, Unité mixte de recherche 7605 Centre national de la recherche scientifique, École Polytechnique, Commissariat à l'énergie atomique, Université Paris VI, École Polytechnique, Palaiseau Cedex, France
R. LOUBÈRE
Affiliation:
Los Alamos National Laboratory, Group T-7, Los Alamos
F. WALRAET
Affiliation:
Département de Physique Théorique et Appliquée, Commissariat à l'énergie atomique/DIF, Bruyères-le-Châtel Cedex, France
V.T. TIKHONCHUK
Affiliation:
Centre Lasers Intenses et Applications, Unité mixte de recherche 5107 Centre national de la recherche scientifique, Université Bordeaux 1, Commissariat à l'énergie atomique, Talence Cedex, France
V. MALKA
Affiliation:
Laboratoire d'Optique Appliquée, Ecole Nationale Supérieure des Techniques Avancées, Centre national de la recherche scientifique, Unité mixte de recherche 7639, Palaiseau, France
J. OVADIA
Affiliation:
Commissariat à l'énergie atomique/DAM/CESTA/DEV/SIS, Le Barp, France
G. BONNAUD
Affiliation:
Commissariat à l'énergie atomique/DSE, Paris, France

Abstract

The forthcoming laser installations related to inertial confinement fusion, Laser Mégajoule (LMJ) (France) and National Ignition Facility (NIF) (USA), require multidimensional numerical simulation tools for interpreting current experimental data and to perform predictive modeling for future experiments. Simulations of macroscopic plasma volumes of the order of 1 mm3 and laser exposure times of the order of hundreds of picoseconds are necessary. We present recent developments in the PARAX code towards this goal. The laser field is treated in a standard paraxial approximation in three dimensions. The plasma response is described by single-fluid, two-temperature, fully nonlinear hydrodynamical equations in the plane transverse to the laser propagation axis. The code also accounts for the dominant nonlocal transport terms in spectral form originating from a linearized solution to the Fokker–Planck equation. The simulations of interest are hohlraum plasmas in the case of indirect drive or the plasma corona for direct drive. Recent experimental results on plasma-induced smoothing of RPP laser beams are used to validate the code.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alouani-Bibi, F., Matte, J.-P. (2002). Influence of the electron distribution function shape on nonlocal electron heat transport in laser-heated plasmas. Phys. Rev. E 66, 066414-1066414-5.Google Scholar
Berger, R.L., Still, C.H., Williams, E.A. & Langdon, A.B. (1998). On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams. Phys. Plasmas 5, 43374356.Google Scholar
Brantov, A.V., Bychenkov, V.Yu., Tikhonchuk, V.T. & Rozmus, W. (1996). Nonlocal plasma electron hydrodynamics. JETP 83, 716730.Google Scholar
Brantov, A.V., Bychenkov, V.Yu., Tikhonchuk, V.T. & Rozmus, W. (1998). Nonlocal electron transport in laser heated plasmas. Phys. Plasmas 5, 27422753.Google Scholar
Brunner, S. & Valeo, E. (2000). Linear delta-f simulations of nonlocal electron heat transport. Phys. Plasmas 7, 28102823.Google Scholar
Brunner, S. & Valeo, E. (2002). Simulations of electron transport in laser hot spots. Phys. Plasmas 9, 923936.Google Scholar
Bychenkov, V.Yu., Rozmus, W.,, Tikhonchuk, V.T. & Brantov, A.V. (1995). Nonlocal electron transport in a plasma. Phys. Rev. Lett. 75, 44054408.Google Scholar
Bychenkov, V.Yu., Novikov, V.N. & Tikhonchuk, V.T. (1998). Theory of nonlocal transport for small perturbations in a plasma. JETP 87, 916925.Google Scholar
Elisseev, V.V., Ourdev, I., Rozmus, W., Tikhonchuk, V.T., Capjack, C.E. & Young, P.E. (1997). Ion wave response to intense laser beams in underdense plasmas. Phys. Plasmas 4, 43334346.Google Scholar
Feit, M.D. & Fleck, J.A. (1988). Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams. J. Opt. Soc. Am. B 5, 633640.Google Scholar
Hüller, S., Mounaix, Ph. & Pesme, D. (1996). Numerical simulation of filamentation and its interplay with SBS in underdense plasmas. Physica Scripta T63, 151157.Google Scholar
Loubère, R. (2002). Une méthode particulaire lagrangienne de type Galerkin discontinue. Applications à la mécanique des fluids et l'interaction laser/plasma. Ph.D. Thesis. Bordeaux, Bordeaux University.
Luciani, J.F., Mora, P. & Virmont, J. (1983). Nonlocal heat transport due to steep temperature gradients. Phys. Rev. Lett. 51, 16641667.Google Scholar
Malka, V., Faure, J., Hüller, S., Tikhonchuk, V.T., Weber, S. & Amiranoff, F. (2003). Enhanced spatiotemporal laser-beam smoothing in gas-jet plasmas. Phys. Rev. Lett. 90, 075002-1075002-4.Google Scholar
Myatt, J., Maximov, A.V. & Short, R.W. (2002). Modelling laser-plasma interaction physics under direct-drive inertial confinement fusion conditions. pp. 93101. LLE Review, Quarterly Report, Rochester, NY: University of Rochester.
Pesme, D., Hüller, S., Myatt, J., Riconda, C., Maximov, A., Tikhonchuk, V.T., Labaune, C., Fuchs, J., Depierreux, S. & Baldis, H.A. (2002). Laser-plasma interaction studies in the context of megajoule lasers for inertial fusion. Plasma Phys. Contr. Fusion 44, B53B67.Google Scholar
Riazuelo, G. & Bonnaud, G. (2000). Coherence properties of a smoothed laser beam in a hot plasma. Phys. Plasmas 7, 38413844.Google Scholar
Schurtz, G.P., Nicolaï, P.D. & Busquet, M. (2000). A nonlocal electron conduction model for multidimensional radiation hydrodynamic codes. Phys. Plasmas 7, 42384249.Google Scholar
Senecha, V.K., Brantov, A.V., Bychenkov, V.Yu. & Tikhonchuk, V.T. (1998). Temperature relaxation in hot spots in a laser-produced plasma. Phys. Rev. E 57, 978981.Google Scholar
Walraet, F. (2003). Propagation et rétrodiffusion d'un faisceau laser lissé dans un plasma de fusion inertielle. Ph.D. Thesis. Paris: Ecole Polytechnique.