Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T14:36:29.354Z Has data issue: false hasContentIssue false

Nonlinear electromagnetic Eigen modes of a self created magnetized plasma channel and its stimulated Raman scattering

Published online by Cambridge University Press:  15 December 2011

Updesh Verma*
Affiliation:
Govt. Degree College Ballarpur, Rampur, U.P., India
A.K. Sharma
Affiliation:
Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: Updesh Verma, Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: updeshv@gmail.com

Abstract

A theoretical formalism is developed to obtain the mode structure of right circularly polarized nonlinear laser Eigen mode in a self created plasma channel in the presence of an axial magnetic field. The nonlinearity in electron response arises due to relativistic mass effect and ponderomotive force induced density redistribution. The Eigen mode is seen to be unstable to stimulated Raman backscattering involving an electrostatic quasi-mode and a scattered electromagnetic wave. The growth rate increases with ambient magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., MacKinnon, A.J., Barringer, L., Gaillard, R., Gizzi, L.A., Meyer, C., Willi, O., Pukhov, A. & Meyer-ter-Vehn, J. (1997). Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys. Rev. Lett. 78, 879882.CrossRefGoogle Scholar
Cai, H-B., Yu, W., Zhu, S. & Zhou, C. (2007). Generation of strong quasistatic magnetic fields in interactions of ultraintense and short laser pulses with overdense plasma targets. Phys. Rev. E 76, 036403/7.Google ScholarPubMed
Clark, D.S. & Fisch, N.J. (2005). Raman laser amplification in preformed and ionizing plasmas. Laser Part. Beams 23, 101106.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quan. Electron. 33, 18791914.Google Scholar
Frolov, A.A. (2009). Generation of quasistatic magnetic fields in the interaction of counter propagating laser pulses in a low-density plasma. Plasma Phys. Rept. 35, 668676.Google Scholar
Gill, T.S., Mahajan, R. & Kaur, R. (2010). Relativistic and ponderomotive effects on evolution of laser beam in a non-uniform plasma channel. Laser Part. Beams 28, 1120.Google Scholar
Horovitz, Y., Eliezer, S., Henis, Z., Paiss, Y., Moshe, E., Ludmirsky, A., Werdiger, M., Arad, B. & Zigler, A. (1998). The inverse Faraday effect in plasmas produced by circularly polarized laser light in the range of intensities 109–1014 W/cm2. Phys. Lett. A 246, 329334.CrossRefGoogle Scholar
Kurki-suonio, T., Morrison, P.J. & Tajima, T. (1989). Self-focusing of an electromagnetic beam in a plasma. Phys. Rev. A 40, 32303239.Google Scholar
Liu, C.S. & Tripathi, V.K. (1994). Interaction of Electromagnetic Waves with Electron Beams and Plasmas. Singapore: World Scientific.Google Scholar
Liu, C.S. & Tripathi, V.K. (1996). Stimulated Raman scattering in a plasma channel. Phys. Plasmas 3, 34103413.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2001). Relativistic laser guiding in an azimuthal magnetic field in a plasma. Phys. Plasmas 8, 285288.Google Scholar
Liu, C.S. & Tripathi, V.K. (1986 ). Parametric instabilities in a magnetized plasma. Phys. Rept. 130, 143216.Google Scholar
Liu, C.S. & Tripathi, V.K. (2000). Laser frequency upshift, self-defocusing, and ring formation in tunnel ionizing gases and plasmas. Phys. Plasmas 7, 43604363.CrossRefGoogle Scholar
Naseri, N., Bychenkov, V.Yu. & Rozmus, W. (2010). Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas. Phys. Plasmas 17, 083109/10.CrossRefGoogle Scholar
Panwar, A. & Sharma, A.K. (2009). Self-phase modulation of a laser in self created plasma channel . Laser Part. Beams 27, 249253.CrossRefGoogle Scholar
Pathak, V. B. & Tripathi, V.K. (2006). Nonlinear electromagnetic plasma Eigen modes and their stability to stimulated Raman scattering. Phys. Plasmas 13, 082105/4.Google Scholar
Porkolab, M. & Chang, R.P H. (1972). Instabilities and induced scattering due to nonlinear landau damping of longitudinal plasma waves in a magnetic field. Phys. Fluids 15, 283296.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1998). Relativistic laser-plasma interaction by multi-dimensional particle-in-cell simulations. Phys. Plasmas 5, 18801886.Google Scholar
Saini, N.S. & Gill, T.S. (2004). Enhanced Raman scattering of a rippled laser beam in a magnetized collisional plasma. Laser Part. Beams 22, 3540.CrossRefGoogle Scholar
Sajal, V. & Tripathi, V.K. (2004). Stimulated Raman scattering of a laser beam in a plasma with azimuthal magnetic field. Phys. Plasmas 11, 42064212.Google Scholar
Sajal, V., Panwar, A. & Tripathi, V.K. (2006). Relativistic forward stimulated Raman scattering of a laser in a plasma channel. Phys. Scr. 74, 484488.CrossRefGoogle Scholar
Sharma, A. & Kourakis, I. (2009). Laser pulse compression and amplification via Raman backscattering in plasma. Laser Part. Beams 27, 279285.Google Scholar
Short, R.W. & Simon, A. (2004). Theory of three-wave parametric instabilities in inhomogeneous plasmas revisited. Phys. Plasmas 11, 53355340.Google Scholar
Singh, R. & Tripathi, V.K. (2009). Filamentation of laser in a magnetized plasma under relativistic and pondromotive nonlinearities. Phys. Plasmas 16, 052108/5.CrossRefGoogle Scholar
Sodha, M., Ghatak, A. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169265.CrossRefGoogle Scholar
Sodha, M., Khanna, R. & Tripathi, V.K. (1974 a). The self-focusing of electromagnetic beams in a strongly ionized magnetoplasma. J. Phys. D: Appl. Phys. 7, 21882197.CrossRefGoogle Scholar
Sodha, M., Mittal, R., Kumar, S. & Tripathi, V.K. (1974 b). Self-focusing of electromagnetic waves in a magneto plasma. Opto-Electron. 6, 167180.CrossRefGoogle Scholar
Trines, R.M.G.M., Kamp, L.P.J., Schep, T.J., Leemans, W.P., Esarey, E.H. & Sluijter, F.W. (2004). Enhancement of high-energy electron generation through suppression of Raman backscattering. Europhys. Lett. 66, 492498.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2009 a). Effect of self focusing on the prolongation of laser produced plasma channel. Laser Part. Beams 27, 3339.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2009 b). Laser second harmonic generation in a rippled density plasma in the presence of azimuthal magnetic field. Laser Part. Beams 27, 719724.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2011). Laser focusing and multiple ionization of Ar in a hydrogen plasma channel created by a pre-pulse. Laser Part. Beams 29, 219225.Google Scholar