Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T06:35:48.692Z Has data issue: false hasContentIssue false

Nonlinear structure of electromagnetic field, electron temperature and electron density in interaction of relativistic laser and plasma with density ripple

Published online by Cambridge University Press:  30 October 2014

Xiongping Xia*
Affiliation:
Department of Science, Guilin University of Technology, Guilin, China
*
Address correspondence and reprint requests to: Xiongping Xia, Department of Science, Guilin University of Technology, Guilin 541004, China. E-mail: xxpccp@163.com

Abstract

In the paper, nonlinear structure of electromagnetic field, electron temperature, and electron density in interaction with relativistic laser and collisional underdense rippled plasma are investigated. The results are shown that due to the combination influence of relativistic effect, ohmic heating and plasma density ripple, electromagnetic field profile presents obvious asynchronism, which the peak of electric field run ahead of the peak of magnetic field. Furthermore, the electromagnetic field profiles show obvious non-sinusoidal, and the profile of electron temperature and density become highly peaked. Especially, compared with the previous work, due to the added influence of plasma density ripple, electromagnetic field, electron temperature and electron density present obvious oscillation along plasma length rather than stabilization amplitude, and their peak are out of sync.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abedi, S., Dorranian, D., Abari, M.E. & Shokri, B. (2011). Relativistic effects in the interaction of high intensity ultra-short laser pulse with collisional underdense plasma. Phys. Plasmas 18, 093108.CrossRefGoogle Scholar
Abari, M.E. & Shokri, B. (2011). Nonlinear heating of underdense collisional plasma by a laser pulse. Phys. Plasmas 18, 053111.CrossRefGoogle Scholar
Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi, O., Mackinnon, A.J., Patel, P., Galimberti, M. & Gizzi, L.A. (2003). Proton imaging detection of transient electromagnetic fields in laser-plasma interaction (invited). Rev. Sci. Instrum. 74, 16881693.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Goldsmith, S., Seely, J.F., Feldman, U., Behring, W.E. & Cohen, L. (1985). Electron temperature and average density in spherical laser-produced plasmas: Ultraviolet plasma spectroscopy. J. Appl. Phys. 58, 40114014.CrossRefGoogle Scholar
Harilal, S.S., Bindhu, C.V., Issac, R.C., Nampoori, V.P.N. & Vallabhan, C.P.G. (1997). Electron density and temperature measurements in a laser produced carbon plasma. J. Appl. Phys. 82, 21402146.CrossRefGoogle Scholar
Jha, P., Singh, R.G., Upadhyaya, A.K. & Mishra, R.K. (2008). Propagation of an intense laser beam in a tapered plasma channel. Phys. Plasmas 15, 033101.CrossRefGoogle Scholar
Kane, E. & Hora, H. (1981). Relativistic and nonlinear radiation interaction between laser beams and plasmas. Aust. J. Phys. 34, 385405.CrossRefGoogle Scholar
Kuo, C.C., Pai, C.H., Lin, M.W., Lee, K.H., Lin, J.Y., Wang, J. & Chen, S.Y. (2007). Enhancement of Relativistic Harmonic Generation by an Optically Preformed Periodic Plasma Waveguide. Phys. Rev. Lett. 98, 033901.CrossRefGoogle ScholarPubMed
Kaw, P., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16: 15221525.CrossRefGoogle Scholar
Kaur, S., Yadav, S. & Sharma, A.K. (2010). Effect of self-focusing on resonant third harmonic generation of laser in a rippled density plasma. Phys. Plasmas 17, 053101.CrossRefGoogle Scholar
Lancia, L., Grech, M., Weber, S., Marquès, J.R., Romagnani, L., Nakatsutsumi, M., Antici, P., Bellue, A., Bourgeois, N., Feugeas, J.L., Grismayer, T., Lin, T., Nicolai, P., Nkonga, B., Audebert, P., Kodama, R., Tikhonchuk, V.T. & Fuchs, J. (2011). Anomalous self-generated electrostatic fields in nanosecond laser-plasma interaction. Phys. Plasmas 18, 030705.CrossRefGoogle Scholar
Niknam, A.R., Hashemzadeh, M. & Shokri, B. (2009). Weakly relativistic and ponderomotive effects on the density steepening in the interaction of an intense laser pulse with an underdense plasma. Phys. Plasmas 16, 033105.CrossRefGoogle Scholar
Niknam, A.R., Milani, M.R.J., Bokaei, B. & Hashemzadeh, M. (2014). Weakly relativistic and ponderomotive effects in interaction of intense laser beam with inhomogeneous collisionless and collisional plasmas. Waves in Random and Complex Media 24, 118.CrossRefGoogle Scholar
Oh, S.Y., Uhm, H.S., Kang, H., Lee, I.W. & Suk, H. (2010). Temporal evolution of electron density and temperature in capillary discharge plasmas. J. Appl. Phys. 107, 103309.CrossRefGoogle Scholar
Panwar, A., Ryu, C.M. & Kumar, A. (2013). Effect of plasma channel non-uniformity on resonant third harmonic generation. Laser Part. Beams 31, 531537CrossRefGoogle Scholar
Qiao, B., He, X.T. & Zhu, S.P. (2005). Fluid theory of magnetic-field generation in intense laser-plasma interaction. Europhys. Lett. 72, 955961.CrossRefGoogle Scholar
Rocca, J.J., Shlyaptsev, V., Tomasel, F.G., Gortazer, O.D., Hartshorn, D. & Chilla, J.L.A. (1994). Demonstration of a discharge pumped table-top soft-X-ray laser. Phys. Rev. Lett. 73, 21922195.CrossRefGoogle ScholarPubMed
Shoda, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169265.Google Scholar
Sadighi-Bonabi, R. & Etehadi-Abari, M. (2010). The electron density distribution and field profile in underdense magnetized plasma. Phys. Plasmas 17, 032101.CrossRefGoogle Scholar
Shokri, B. & Nikanm, A.R. (2006). Nonlinear structure of the electromagnetic waves in underdense plasmas. Phys. Plasmas 13, 113110.CrossRefGoogle Scholar
Sheng, Z.M., Zhang, J. & Umstadter, D. (2003). Plasma density gratings induced by intersecting laser pulses in underdense plasmas. Appl. Phys. B: Lasers Opt. 77, 673680.CrossRefGoogle Scholar
Theobald, W., Häbner, , Kingham, R., Sauerbrey, R., Fehr, R., Gericke, D.O., Schlanges, M., Kraeft, W.D. & Ishikawa, K. (1999). Electron densities, temperatures, and the dielectric function of femtosecond-laser-produced plasmas. Phys. Rev. E 59, 35443553.CrossRefGoogle Scholar
Varshney, P., Sajal, V., Singh, K.P., Kumar, R. & Sharma, N.K. (2013). Strong terahertz radiation generation by beating of extraordinary mode lasers in a rippled density magnetized plasma. Laser Part. Beams 31, 337344.CrossRefGoogle Scholar
Xia, X.P., Cai, Z.B. & Yi, L. (2011 a). The splitted beam profile of laser beam in the interaction of intense lasers with overdense plasmas. Laser Part. Beams 29, 161168.CrossRefGoogle Scholar
Xia, X.P., Qin, Z., Xu, B. & Cai, Z.B. (2011 b). Dielectric constant and laser beam propagation in an underdense collisional plasma: effects of electron temperature. Phys. Scr. 84, 015508.CrossRefGoogle Scholar
Xia, X.P. & Xu, B. (2013). Nonlinear structure of Gaussian laser beam in an axial non-uniform collisional plasma. Opt. 124, 66476650.Google Scholar
Xie, B.S., Wu, H.C., Wang, H.Y., Wang, N.Y. & Yu, M.Y. (2007). Analysis of the electromagnetic fields and electron acceleration in the buble regime of the laser-plasma interaction. Phys. Plasmas 14, 073103.CrossRefGoogle Scholar
York, A.G., Milchberg, H.M., Palastro, J.P. & Antonsen, T.M. (2008). Direct acceleration of electrons in a corrugated plasma waveguide. Phys. Rev. Lett. 100, 195001.CrossRefGoogle Scholar