Published online by Cambridge University Press: 28 March 2014
Laser ablation of graphite materials in the presence of an external magnetic field is studied with the use of the newly developed HEIGHTS-PIC particle-in-cell code and compared with both theoretical and experimental results. Carbon plumes behavior controlled by a strong magnetic field is of interest to evaluate the plume shielding effects to protect the original exposed target from further damage and erosion. Since intense power deposition on plasma facing components is expected during Tokamaks loss of plasma confinement events such as disruptions, vertical displacements event, runaway electrons, or during normal operating conditions such as edge-localized modes, it is critical to better understand the evolving target plasma behavior for more accurate prediction of the potential damage created by these high-energetic dumps which may not be easily mitigated without loss of structural and functional performance of the plasma facing components. Numerical experiments have been performed to provide benchmarking conditions for the HEIGHTS-PIC simulation package originally designed to evaluate the erosion of the Tokamak surfaces, splashing of the melted/ablated-vaporized material, and transport into the bulk plasma with consequent plasma contamination. Evolving target plasma temperature and density are calculated and compared with measured reported values available into literature for similar conditions and show good agreement with the HEIGHTS-PIC package predictions.