Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:06:16.007Z Has data issue: false hasContentIssue false

Observation of long life plasma generated in a cavity by CO2 lasers

Published online by Cambridge University Press:  09 March 2009

H. Daido
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
M. Fujita
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
K. Terai
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
F. Miki
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
K. Nishihara
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
M. Murakami
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
K. Mima
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
S. Nakai
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
C. Yamanaka
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
A. Hasegawa
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan

Abstract

Plasmas with long life times (∼20 ns) are generated in a cavity target by intense CO2 laser pulses (2 × 1014W/cm2). The plasma life depends on the configuration of irradiation and target, which may infer thermal conduction inhibition by the laser-generated magnetic field. The experimental results agree with those of computer simulations with magnetic inhibition of thermal conduction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Daido, H., Tateyama, R., Ogura, K., Mima, K., Nakai, S. & Yamanaka, C. 1983 Jpn. J. Appl. Phys. 22, L248.CrossRefGoogle Scholar
Forslund, D. W. & Brackbill, J. U. 1982 Phys Rev. Lett. 48, 1614.CrossRefGoogle Scholar
Hasegawa, A. 1985 Rev. Laser Engineering, 13, 585.CrossRefGoogle Scholar
Hauer, A. & Mason, R. J. 1983 Phys. Rev. Lett. 51, 459.CrossRefGoogle Scholar
Jaanimagi, P. A., Ebrahim, N. A., Burnett, N. H. & Joshi, C. 1981 Appl. Phys. Lett. 38, 734.CrossRefGoogle Scholar
Jones, R. D. & Mead, W. C. 1985 Nucl. Fusion (to be published).Google Scholar
Kmetyk, L. N. & Gross, R. A. 1982 Phys. Fluids, 25, 1042.CrossRefGoogle Scholar
Lindemuth, I. R. & Kirkpatrick, R. C. 1983 Nucl. Fusion, 23, 263.CrossRefGoogle Scholar
Nishihara, K. 1983 ILE Quarterly Progress Report, ILE-QPR-83–5, p. 20, p. 24, Osaka, Japan.Google Scholar
Rosenbluth, M. N. & Bussac, M. N. 1979 Nucl. Fusion, 19, 489.CrossRefGoogle Scholar
Shiraga, H., Mochizuki, T., Sakabe, S., Okada, K., Kikuchi, A. & Yamanaka, C. 1982 Phys. Rev. Lett. 49, 1244.CrossRefGoogle Scholar
Stratton, T. F. 1965 Plasma Diagnostic Techniques, p. 392, Academic Press N. Y.Google Scholar
Tan, T. H., McCall, G. H. & Williams, A. H. 1984 Phys. Fluids, 27, 296.CrossRefGoogle Scholar
Terai, K., Daido, H., Fujita, M., Nishimura, H., Mima, K., Nakai, S. & Yamanaka, C. 1984 Jpn. J. Appl. Phys. 23, L445.CrossRefGoogle Scholar
Terai, K., Daido, H., Fujita, M., Miki, F., Nakai, S. & Yamanaka, C. 1985 Appl. Phys. Lett. 46, 355.CrossRefGoogle Scholar
Yamanaka, C., Nakai, S., Matoba, M., Fujita, H., Kawamura, Y., Daido, H., Inoue, M., Fukumaru, F. & Terai, K. 1981 Ieee J. Quantum Electron. QE-17, 1678.CrossRefGoogle Scholar
Yates, M. A., Hulsteyn, D. B., Rutkowski, H., Kyrala, G. & Brackbill, J. U. 1982 Phys. Rev. Lett. 49, 1702.CrossRefGoogle Scholar