Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T07:39:29.111Z Has data issue: false hasContentIssue false

On the interaction of focused electromagnetic beams and space-charge fields in laser-plasma systems

Published online by Cambridge University Press:  25 September 2012

Alexandre Bonatto*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
Renato Pakter
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
Felipe Barbedo Rizzato
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
Cristian Bonatto
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
*
Address correspondence and reprint requests to: Alexandre Bonatto, Instituto de fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Port Alegre 91501-970, Brasil. E-mail: abonatto@if.ufrgs.br

Abstract

In the present analysis we study the weakly nonlinear coupled dynamics involving focused radiation beams and space-charge fields in laser-plasmas systems. We direct the analysis to regimes evolving with the co-moving coordinate of the beam frame, but do not make any assumptions on paraxial or underdense conditions. The model thus constructed allows us to investigate equilibrium and nonequilibrium regimes alike. Dependence of equilibrium profiles on control parameters is examined, and beam stability and evolution is investigated as one adds small mismatches to the ideally matched equilibrium. Details of beam evolution depend on initial conditions. However, independently of the precise form of initial conditions, mismatched beams evolve to incoherent space-time patterns.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azimov, B.S., Sagatov, M.M. & Sukhorukov, A.P. (1991). Formation and propagation of steady-state laser pulses in media under the combined action of third- and fifth-order nonlinearities. Sov. J. Quant. Electron. 21, 93.CrossRefGoogle Scholar
Bingham, R. (2003). Accelerator physics—In the wake of success. Nat. 424, 258.Google ScholarPubMed
Bonatto, A., Pakter, R. & Rizzato, F.B. (2006). Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas. J. Plasma Phys. 72, 179.Google Scholar
Bonatto, A., Pakter, R. & Rizzato, F.B. (2011). Self-consistent dynamics of electromagnetic pulses and wakefields in laser-plasma interactions. Laser Part. Beams 29, 399.CrossRefGoogle Scholar
Duda, B.J. & Mori, W.B. (2000). Variational principle approach to short-pulse laser-plasma interactions in three dimensions. Phys. Rev. E 61, 1925.CrossRefGoogle ScholarPubMed
Esarey, E., Hafizi, B., Hubbard, R. & Ting, A. (1998). Trapping and acceleration in self-modulated laser wakefields. Phys. Rev. Lett. 80, 5552.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B., Shadwick, B.A., Wurtele, J.S. & Leemans, W.P. (2000). Nonlinear theory of nonparaxial laser pulse propagation in plasma channels. Phys. Rev. Lett. 84, 3081.CrossRefGoogle ScholarPubMed
Farina, F. & Bulanov, S.V. (2001). Relativistic electromagnetic solitons in the electron-ion plasma. Phys. Rev. Lett. 86, 5289.CrossRefGoogle ScholarPubMed
Gibbon, P. (2007). Short Laser Pulses Interactions with Matter. London: Imperial College Press.Google Scholar
Jha, P., Malvyia, A. & Upadhyay, A.K. (2010). Wakefield effects on the evolution of symmetric laser pulses in a plasma channel. Laser Part. Beams 28, 245.CrossRefGoogle Scholar
Joshi, C. & Katsouleas, T. (2003). Plasma accelerators at the energy frontier and on tabletops. Phys. Today 56, 47.CrossRefGoogle Scholar
Kozlov, V.A., Litvak, A.G. & Suvorov, E.V. (1979). Envelope solitons of relativistically strong electromagnetic waves. Zh. Eksp. Teor. Fiz 76, 148.Google Scholar
Mendonça, J.T. (2001). Theory of Photon Accelerator. Bristol: IOP Publishing.CrossRefGoogle Scholar
Mofiz, U.A. & de Angelis, U. (1985). Nonlinear propagation and localization of intense electromagnetic waves in relativistic plasmas. J. Plasma Phys. 33, 107.CrossRefGoogle Scholar
Mora, P. & Antonsen, T.M. Jr. (1997). Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas. Phys. Plasmas 4, 217.CrossRefGoogle Scholar
Poornakala, S., Das, A., Sen, A. & Kaw, P.K. (2002)., Laser envelope solitons in cold overdense plasmas. Phys. Plasmas 9, 1820.CrossRefGoogle Scholar
Sodha, M.S., Sharma, A. & Agarwal, S.K. (2007). Focusing of electromagnetic beams in ionosphere with finite thermal conduction. J. Geophys. Res. 112, A03302.CrossRefGoogle Scholar
Shukla, P.K., Rao, N.N., Yu, M.Y., & Tsintsadze, N.L. (1986). Relativistic nonlinear effects in plasmas. Phys. Lett. 138, 1.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron-accelerator. Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar