Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:02:41.052Z Has data issue: false hasContentIssue false

Optical emission spectroscopy of laser-produced carbon plasma at moderate and low irradiance in an ambient atmosphere

Published online by Cambridge University Press:  09 March 2009

R.K. Thareja
Affiliation:
Department of phsics and centre for Laser Technology, Indian Institute of Technology, Kanpur 208 016 (UP), India
Abhilasha
Affiliation:
Department of phsics and centre for Laser Technology, Indian Institute of Technology, Kanpur 208 016 (UP), India
R.K. Dwivedi
Affiliation:
Department of phsics and centre for Laser Technology, Indian Institute of Technology, Kanpur 208 016 (UP), India

Abstract

The plasma produced during pulsed-laser deposition of thin carbon films is studied in the presence of ambient gases (Air, He, Ar) at low and moderate irradiances of Nd:YAG laser. The presence of ambient gas shows a pronounced effect on the dynamics of the plasma plume. At moderate intensity, we report an appearance of a peculiar double-peak structure in the temporal profile of the C II transition in laser-produced carbon plasma as it expands into a background gas. We believe that the structure originates mainly due to stratification of the plasma into fast and slow ion components at the interface where Rayleigh-Taylor instability occurs. Thin carbon films deposited on silicon in the presence of argon gas have shown the characteristic features of diamond-like carbon in X-ray diffraction and Raman Spectroscopy. The X-ray diffraction pattern of carbon film deposited at 1 torr of argon gas pressure shows the dominance of (111), (220), (311), and (400) crystalline plane of cubic diamond.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abhilasha, & Thareja, R.K. 1993 Phys. Lett. A 184, 99.Google Scholar
Abhilasha, & Thareja, R.K. 1995 Appl. Phys. B 61, 63.Google Scholar
Abhilasha, et al. 1993 Phys. Rev. E 48, 2929.Google Scholar
Abhilasha, et al. 1994 J. Appl. Phys. 75, 8237.Google Scholar
Bekefi, G. 1976 Principles of Laser Plasmas (Wiley, New York).Google Scholar
Bukovsky, Y.A. et al. 1990 Spectrochimica Acta 46A, 517.Google Scholar
Champeaux, C. et al. 1993 Appl. Surf. Sci. 69. 335.Google Scholar
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability, chap. X (Oxford University Press, London), p. 428.Google Scholar
Dixon, R.H. & Elton, R.C. 1977 Phys. Rev. Lett. 38, 1072.Google Scholar
Dixon, R.H. et al. 1983 Optics Comm. 45, 397.Google Scholar
Dittrich, K. & Wennrich, R. 1984 Prog. Analyt. Atom. Spectrosc. 7, 139.Google Scholar
Dreyfus, R.W. et al. 1986 SPIE 710, 46.Google Scholar
Dwivedi, R.K. & Thareja, R.K. 1995a Surf. and Coat. Technol. 73, 170.Google Scholar
Dwivedi, R.K. & Thareja, R.K. 1995b Phys. Rev. B 51, 7160.Google Scholar
Dyer, R.E. & Farley, R.J. 1993 J. Appl. Phys. 74, 1442.Google Scholar
Griem, H.R. 1964 Plasma Spectroscopy (McGraw Hill, New York).Google Scholar
Gruen, D.M. et al. 1994 J. Appl. Phys. 75, 1758.Google Scholar
Hughes, T.P. 1975 Plasmas and Laser Light (John Wiley and Sons, Inc., New York), p. 435.Google Scholar
Knight, D.S. & White, W.B. 1989 J. Mater. Res. 4, 385.Google Scholar
Laqua, K. 1979 Analytical Laser Spectroscopy, Omnetto, N., ed. (Wiley, Interscience, New York).Google Scholar
Leuchtner, R.E. et al. 1991 J. Chem. Phys. 94, 1093.Google Scholar
Mehlman, G. et al. 1993 J. Appl. Phys. 74, 53.Google Scholar
Naher, U. et al. 1992 Phys. Rev. Lett. 68, 3416.Google Scholar
Pappas, D.L. et al. 1992 J. Appl. Phys. 71, 5675.Google Scholar
Powers, D.E. et al. 1983 J. Chem. Phys. 78, 2866.Google Scholar
Prasad, P.S.R. et al. 1993 Phys. Stat. Sol.(a) 139, Kl.Google Scholar
Ripin, B.H. et al. 1986 Laser Interaction and Related Plasma Phenomena, Vol. 7, Hora, H. and Miley, G., eds. (Plenum, New York), p. 857.Google Scholar
Ripin, B.H. et al. 1988 Laser Interaction and Related Plasma Phenomena, Vol. 8, Hora, H. and Miley, G., eds. (Plenum, New York), p. 417.Google Scholar
Ripin, B.H. et al. 1990 Laser Part. Beams 8, 183.Google Scholar
Rohlfing, E.A. et al. 1984 J. Chem. Phys. 81, 3322.Google Scholar
Rose, S.J. 1991 Laser Part. Beams 9, 869.Google Scholar
Rumsby, P.T. & Paul, J.W.M. 1974 Plasma Phys. 16, 247.Google Scholar
Sedov, L. 1959 Similarity and Dimensional Methods in Mechanics (Academic Press, New York).Google Scholar
Seely, J.F. & Mcknight, W.B. 1977 J. Appl. Phys. 48, 3691.Google Scholar
Seth, J. et al. 1993 Appl. Phys. Lett. 63, 473.Google Scholar
Singh, R.K. & Narayan, J. 1990 Phys. Rev. B 41, 8843.Google Scholar
Soom, B. et al. 1993 J. Appl. Phys. 74, 5372.Google Scholar
Steden, C. & Kunje, H.J. 1990 Phys. Lett. A 151, 534.Google Scholar
Striganov, A.R. & Sventitskii, N.S. 1968 Tables of Spectral Lines of Neutral and Ionized Atoms (Plenum, New York, Washington).Google Scholar
Tambay, R. et al. 1992 J. Appl. Phys. 72, 1197.Google Scholar
Thareja, R.K. & Abhilasha, 1994 J. Chem. Phys. 100, 4019.Google Scholar
Wiese, W.L. et al. 1966 Atomic Transition Probabilities, (National Standard Reference Data System, NBS 4, US Government Printing Office), Vol. I.Google Scholar
Zel'Dovich, Ya.B. & Raizer, Yu.P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomenon (Academic, New York).Google Scholar