Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T07:14:45.907Z Has data issue: false hasContentIssue false

Optimization of laser acceleration of protons from mixed structure nanotarget

Published online by Cambridge University Press:  20 May 2015

Saeed Mirzanejhad*
Affiliation:
Faculty of Basic Science, Atomic and Molecular Physics Department, University of Mazandaran, Babolsar, Iran
Farshad Sohbatzadeh
Affiliation:
Faculty of Basic Science, Atomic and Molecular Physics Department, University of Mazandaran, Babolsar, Iran
Atefeh Joulaei
Affiliation:
Faculty of Basic Science, Atomic and Molecular Physics Department, University of Mazandaran, Babolsar, Iran
Javad Babaei
Affiliation:
Faculty of Basic Science, Atomic and Molecular Physics Department, University of Mazandaran, Babolsar, Iran
Khadijeh Shahabei
Affiliation:
Faculty of Basic Science, Atomic and Molecular Physics Department, University of Mazandaran, Babolsar, Iran
*
Address correspondence and reprint requests to: Saeed Mirzanejhad, Faculty of basic science, Atomic and Molecular Physics Department, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran. E-mail: saeed@umz.ac.ir

Abstract

In this study, ion acceleration from thin planar diamond-like carbon (DLC) and polystyrene (PS) foils irradiated by ultraintense (a0 = 200) and ultrashort (15 fs) laser pulses is investigated numerically. The effects of target composition and thickness on the acceleration of protons and carbon ions are reported by 1D3V particle-in-cell simulation code and compared with the analytical models of ion acceleration. In the analytical formalism, the acceleration criterion of ions with different charge-to-mass ratio (q/m) is obtained. This criterion is related to the potential difference through the electrostatic shock distortion and its velocity. According to this result, charged particles with large q/m ratio have a good chance to accelerate in front of the electrostatic shock field. It is shown that mono-energetic proton bunch with energies >1.5 GeV is produced by 20 nm DLC foil supported by 10 nm hydrogen layer. Finally nanometer PS foil is examined and 2.33 Gev protons with ~1.5% energy spread are obtained for 50 nm thickness.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borghesi, M., Bigongiari, A., Kar, S., Macchi, A., Romagnani, L., Audebert, P., Fuchs, J., Toncian, T., Willi, O., Bulanov, S.V., Mackinnon, A.J. & Gauthier, J.C. (2008). Laser-driven proton acceleration: Source optimization and radiographic applications. Plasma Phys. Control. Fusion 50, 124040.CrossRefGoogle Scholar
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412.CrossRefGoogle Scholar
D'Humières, E., Brantov, A., Bychenkov, V.Y. & Tikhonchuk, V.T. (2013). Optimization of laser–target interaction for proton acceleration. Phys. Plasmas 20, 023103.CrossRefGoogle Scholar
Daido, H., Nishiuchi, M. & Pirozhov, A. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401.CrossRefGoogle ScholarPubMed
Eliasson, B., Liu, C.S., Shao, X., Sagdeev, R.Z. & Shikla, P.K. (2009). Laser acceleration of mono-energetic protons via a double layer emerging from an ultra-thin foil. New J. Phys. 11, 073006.CrossRefGoogle Scholar
Eliezer, S., Nissim, N., Mariamartinezval, J., Mima, K. & Hora, H. (2014). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211216.CrossRefGoogle Scholar
Fuchs, J., Antici, P., d'Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pépin, H. & Audebert, P. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 48.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernández, J.C. (2007). Laser-driven ion accelerators: Spectral control, mono-energetic ions and new acceleration mechanisms. Laser Part. Beams 25, 3.CrossRefGoogle Scholar
Fews, A.P., Norreys, P.A., Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Lee, P. & Rose, S.J. (1994). Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets. Phys. Rev. Lett. 73, 1801.CrossRefGoogle ScholarPubMed
Fourkal, E., Veltchev, I. & Ma, C.-M. (2009). Laser-to-proton energy transfer efficiency in laser–plasma interactions. J. Plasma Phys. 75, 235.CrossRefGoogle Scholar
Gibbon, P., Andreev, A.A. & Platonov, K.Y. (2012). A kinematic model of relativistic laser absorption in an overdense plasma. Plasma Phys. Control. Fusion 54, 045001.CrossRefGoogle Scholar
Haberberger, D., Tochitsky, S., Fiuza, F., Gong, C., Fonseca, R.A., Silva, L.O., Mori, W.B. & Joshi, C. (2012). Collisionless shocks in laser-produced plasma generate mono-energetic high-energy proton beams. Nat. Phys. 8, 95.CrossRefGoogle Scholar
Henig, A., Steinke, S., Schnürer, M., Sokollik, T., Hörlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B.M., Yan, X.Q., Meyer-ter-Vehn, J., Tajima, T., Nickles, P.V., Sandner, W. & Habs, D. (2009). Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003.CrossRefGoogle ScholarPubMed
Macchi, A., Borghesi, M., Passoni, M. (2013). Ion acceleration by super intense laser–plasma interaction. Rev. Mod. Phys. 85, 751.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, T. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.CrossRefGoogle ScholarPubMed
Pegoraro, F. & Bulanov, S.V. (2007). Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse. Phys. Rev. Lett. 99, 065002.CrossRefGoogle Scholar
Saitoh, H. (2012). Classification of diamond-like carbon films. Japan. J. Appl. Phys. 51, 0120.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt laser irradiation of solids. Phys. Rev. Lett. 85, 2945.CrossRefGoogle ScholarPubMed
Sagisaka, A., Nagatomo, H., Daido, H., Pirozhkov, A.S., Ogura, K., Orimo, S., Mori, M., Nishiuchi, M., Yogo, A. & Kado, M. (2009). Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration. J. Plasma Phys. 75, 609.CrossRefGoogle Scholar
Schlegel, T., Naumova, N., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V., & Mourou, G. (2009). Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys. Plasmas 16, 083103.CrossRefGoogle Scholar
Wang, H.Y., Yan, X.Q., Chen, J.E., He, X.T., Ma, W.J., Bin, J.H., Schreiber, J., Tajima, T. & Habs, D. (2013). Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse. Phys. Plasmas 20, 013101.CrossRefGoogle Scholar
Zhang, X., Shen, B., Li, X., Jin, Z., Wang, F. & Wen, M. (2007). Efficient GeV ion generation by ultraintense circularly polarized laser pulse. Phys. Plasmas 14, 123108.CrossRefGoogle Scholar