Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T05:27:08.908Z Has data issue: false hasContentIssue false

Optimized stability of a modulated driver in a plasma wakefield accelerator

Published online by Cambridge University Press:  22 July 2016

R. Martorelli*
Affiliation:
Institut für Theoretische Physik I, Heinrich-Heine-Universität, 40255 Düsseldorf, Germany
A. Pukhov
Affiliation:
Institut für Theoretische Physik I, Heinrich-Heine-Universität, 40255 Düsseldorf, Germany
*
Address correspondence and reprint requests to: R. Martorelli, Institut für Theoretische Physik I, Heinrich-Heine-Universität, 40255 Düsseldorf, Germany. E-mail: roberto@tp1.uni-duesseldorf.de

Abstract

We analyze the transverse stability for a configuration of multiple Gaussian bunches subject to the self-generated plasma wakefield. Through a semi-analytical approach we first study the equilibrium configuration for the modulated beam and then we investigate the evolution of the equilibrium configuration due to the emittance-driven expansion of the beam front that results in a rigid backward shift. The rear-directed shift brings the modulated beam out of the equilibrium, with the possibility for some of the bunch particles to be lost with a consequent deterioration of the driver. We look therefore for the proper position of the single bunches that maximize the stability without severely affecting the accelerating field behind the driver. We then compare the results with three-dimensional particle in cell simulations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

An, W., Zhou, M., Vafaei-Najafabadi, N., Marsh, K.A., Clayton, C.E., Joshi, C., Mori, W.B., Lu, W., Adli, E., Corde, S., Litos, M., Li, S., Gessner, S., Frederico, J., Hogan, M.J., Walz, D., England, J., Delahaye, J.P. & Muggli, P. (2013). Strategies for mitigating the ionization-induced beam head erosion problem in an electron-beam-driven plasma wakefield accelerator. Phys. Rev. ST Accel. Beams 16, 101301.CrossRefGoogle Scholar
Assmann, R., Bingham, R., Bohl, T., Bracco, C., Buttenschon, B., Butterworth, A., Caldwell, A., Chattopadhyay, S., Cipiccia, S., Feldbaumer, E., Fonseca, R.A., Goddard, B., Gross, M., Grulke, O., Gschwendtner, E., Holloway, J., Huang, C., Jaroszynski, D., Jolly, S., Kempkes, P., Lopes, N., Lotov, K., Machacek, J., Mandry, S.R., McKenzie, J.W., Meddahi, M., Militsyn, B.L., Moschuering, N., Muggli, P., Najmudin, Z., Noakes, T.C.Q., Norreys, P.A., Oz, E., Pardons, A., Petrenko, A., Pukhov, A., Rieger, K., Reimann, O., Ruhl, H., Shaposhnikova, E., Silva, L.O., Sosedkin, A., Tarkeshian, R., Trines, R.M.G.N., Tuckmantel, T., Vieira, J., Vincke, H., Wing, M. & Xia, G. (AWAKE Collaboration) (2014). Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics. Plasma Phys. Control. Fusion 56, 084013.CrossRefGoogle Scholar
Barov, N. & Rosenzweig, J.B. (1994). Propagation of short electron pulses in underdense plasmas. Phys. Rev. E 49, 4407.CrossRefGoogle ScholarPubMed
Blumenfeld, I., Clayton, C.E., Decker, F.-J., Hogan, M.J., Huang, C., Ischebeck, R., Iverson, R., Joshi, C., Katsouleas, T., Kirby, N., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., Oz, E., Siemann, R.H., Walz, D. & Zhou, M. (2007). Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741.CrossRefGoogle Scholar
Breizman, B.N., Chebotaev, P.Z., Kudryavtsev, A.M., Lotov, K.V. & Skrinsky, A.N. (Eds) (1997). Self-focused particle beam drivers for plasma wakefield accelerators. AIP Conf. Proc., Vol. 396, 75.CrossRefGoogle Scholar
Buchanan, H.L. (1987). Electron beam propagation in the ion-focused regime. Phys. Fluids 30, 221.CrossRefGoogle Scholar
Caldwell, A., Adli, E., Amorim, L., Apsimon, R., Argyropoulos, T., Assmann, R., Bachmann, A.-M., Batsch, F., Bauche, J., Berglyd Olsen, V.K., Bernardini, M., Bingham, R., Biskup, B., Bohl, T., Bracco, C., Burrows, P.N., Burt, G., Buttenschon, B., Butterworth, A., Cascella, M., Chattopadhyay, S., Chevallay, E., Cipiccia, S., Damerau, H., Deacon, L., Dirksen, P., Doebert, S., Dorda, U., Elsen, E., Farmer, J., Fartoukh, S., Fedosseev, V., Feldbaumer, E., Fiorito, R., Fonseca, R., Friebel, F., Geschonke, G., Goddard, B., Gorn, A.A., Grulke, O., Gschwendtner, E., Hansen, J., Hessler, C., Hillenbrand, S., Hofle, W., Holloway, J., Huang, C., Huther, M., Jaroszynski, D., Jensen, L., Jolly, S., Joulaei, A., Kasim, M., Keeble, F., Kersevan, R., Kumar, N., Li, Y., Liu, S., Lopes, N., Lotov, K.V., Lu, W., Machacek, J., Mandry, S., Martin, I., Martorelli, R., Martyanov, M., Mazzoni, S., Meddahi, M., Merminga, L., Mete, O., Minakov, V.A., Mitchell, J., Moody, J., Muller, A.-S., Najmudin, Z., Noakes, T.C.Q., Norreys, P., Osterhoff, J., Oz, E., Pardons, A., Pepitone, K., Petrenko, A., Plyushchev, G., Pozimski, J., Pukhov, A., Reimann, O., Rieger, K., Roesler, S., Ruhl, H., Rusnak, T., Salveter, F., Savard, N., Schmidt, J., von der Schmitt, H., Seryi, A., Shaposhnikova, E., Sheng, Z.M., Sherwood, P., Silva, L., Simon, F., Soby, L., Sosedkin, A.P., Spitsyn, R.I., Tajima, T., Tarkeshian, R., Timko, H., Trines, R., Tueckmantel, T., Tuev, P.V., Turner, M., Velotti, F., Verzilov, V., Vieira, J., Vincke, H., Wei, Y., Welsch, C.P., Wing, M., Xia, G., Yakimenko, V., Zhang, H. & Zimmermann, F. (2015). Path to AWAKE: Evolution of the concept. Nucl. Instrum. Methods A (arXiv:1511.09032). doi:10.1016/j.nima.2015.12.050.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538.CrossRefGoogle ScholarPubMed
Hogan, M.J., Barnes, C.D., Clayton, C.E., Decker, F.J., Deng, S., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K.A., Mori, W. B., Muggli, P., O'Connell, C.L., Oz, E., Siemann, R.H. & Walz, D. (2005). Multi-GeV energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 95, 054802.CrossRefGoogle Scholar
Kenigs, R. & Jones, M. (1987). Two-dimensional dynamics of the plasma wakefield accelerator. Phys. Fluids 30, 252.CrossRefGoogle Scholar
Krall, J., Nguyen, K. & Joyce, G. (1989). Numerical simulations of axisymmetric erosion processes in ion-focused regime-transported beams. Phys. Fluids B 1, 2099.CrossRefGoogle Scholar
Kumar, N., Pukhov, A. & Lotov, K. (2010). Self-modulation instability of a long proton bunch in plasmas. Phys. Rev. Lett. 104, 255003.CrossRefGoogle ScholarPubMed
Leemans, W.P., Gonsalves, A.J., Mao, H.-S., Nakamura, K., Benedetti, C., Schroeder, C.B., Tóth, Cs., Daniels, J., Mittelberger, D.E., Bulanov, S.S., Vay, J.-L., Geddes, C.G.R. & Esarey, E. (2014). Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002.CrossRefGoogle ScholarPubMed
Lotov, K.V. (1998). Simulation of ultrarelativistic beam dynamics in plasma wake-field accelerator. Phys. Plasmas 5, 785.CrossRefGoogle Scholar
Lotov, K.V. (2011). Controlled self-modulation of high energy beams in a plasma. Phys. Plasmas 18, 024501.CrossRefGoogle Scholar
Lotov, K.V. (2015). Physics of beam self-modulation in plasma wakefield accelerators. Phys. Plasmas 22, 103110.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535.CrossRefGoogle ScholarPubMed
Martorelli, R. & Pukhov, A. (2016). Characterization of the equilibrium configuration for modulated beams in a plasma wakefield accelerator. Phys. Plasmas 23, 053109.CrossRefGoogle Scholar
Pukhov, A. (2016). Particle-in-cell codes for plasma-based particle acceleration. CERN Yellow Rep. 1, 181.Google Scholar
Zhou, M., Clayton, C.E., Huang, C., Joshi, C., Lu, W., Marsh, K. A., Mori, W.B., Katsouleas, T., Muggli, P., Oz, E., Berry, M., Blumenfeld, I., Decker, F.-J., Hogan, M.J., Ischebeck, R., Iverson, R., Kirby, N., Siemann, R. & Walz, D. (Eds) (2007). Beam head erosion in self-ionized plasma wakefield accelerators. Proc. PAC07 No. 3064.CrossRefGoogle Scholar