Article contents
Pedestal temperature models based on first and second stability limits of ballooning modes
Published online by Cambridge University Press: 06 March 2006
Abstract
Models for the prediction of electron pedestal temperatures at the edge of type I ELMy H-mode plasmas are developed. These models are based on theory motivated concepts for pedestal width and pressure gradient. The pedestal pressure gradient is assumed to be limited by high n ballooning mode instabilities, where both the first and second stability limits are considered. The effect of the bootstrap current, which reduces the magnetic shear in the steep pressure gradient region at the edge of the H-mode plasma, can result in access to the second stability of ballooning mode. In these pedestal models, the magnetic shear and safety factor are calculated at one pedestal width away from separatrix. The predictions of these models are compared with the experimental electron pedestal temperatures for type I ELMy H-mode discharges obtained from the latest public version (version 3.2) in the International Tokamak Physics Activity Edge (ITPA) Pedestal Database.
Keywords
- Type
- Research Article
- Information
- Copyright
- © 2006 Cambridge University Press
References
REFERENCES
- 1
- Cited by