Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T16:38:20.026Z Has data issue: false hasContentIssue false

Pedestal temperature models based on first and second stability limits of ballooning modes

Published online by Cambridge University Press:  06 March 2006

THAWATCHAI ONJUN
Affiliation:
Sirindhorn International Institute of Technology, Thammasat University, Pathumthani, Thailand

Abstract

Models for the prediction of electron pedestal temperatures at the edge of type I ELMy H-mode plasmas are developed. These models are based on theory motivated concepts for pedestal width and pressure gradient. The pedestal pressure gradient is assumed to be limited by high n ballooning mode instabilities, where both the first and second stability limits are considered. The effect of the bootstrap current, which reduces the magnetic shear in the steep pressure gradient region at the edge of the H-mode plasma, can result in access to the second stability of ballooning mode. In these pedestal models, the magnetic shear and safety factor are calculated at one pedestal width away from separatrix. The predictions of these models are compared with the experimental electron pedestal temperatures for type I ELMy H-mode discharges obtained from the latest public version (version 3.2) in the International Tokamak Physics Activity Edge (ITPA) Pedestal Database.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aymar, R., Barabaschi, P. & Shimomura, Y. (2002). The ITER design. Plasma Phys. Control. Fus. 44, 519.Google Scholar
Connor, J.W. (1998). A review of models for ELMs. Plasma Phys. Control. Fus. 40, 191.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Deutsch, C., Bret, A. & Fromy, P. (2005). Mitigation of electromagnetic instabilities in fast ignition scenario. Laser Part. Beams 23, 58.Google Scholar
Greenwald, M., Boivin, R.L., Bombarda, F., Bonoli, P.T., Fiore, C.L., Garnier, D., Goetz, J.A., Golovato, S.N., Graf, M.A., Granetz, R.S., Horne, S., Hubbard, A., Hutchinson, I.H., Irby, J.H., LaBombard, B., Lipschultz, B., Marmar, E.S., May, M.J., McCracken, G.M., O'Shea, P., Rice, J.E., Schachter, J., Snipes, J.A., Stek, P.C., Takase, Y., Terry, J.L., Wang, Y., Watterson, R., Welch, B. & Wolfe, S.M. (1997). H-mode confinement in Alcator C-Mod. Nucl. Fus. 37, 793.Google Scholar
Hatae, T., Sugihara M., Hubbard A.E., Igitkhanov, Yu., Kamada, Y., Janeschitz, G., Horton, L.D., Ohyabu, N., Osborne, T.H., Osipenko, M., Suttrop, W., Urano, H. & Weisen, H. (2001). Understanding of H-mode pedestal characteristics using the multimachine pedestal database. Nucl. Fus. 41, 285.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Kamada, Y., Hatae, T., Fukuda, T. & Takizuka, T. (1999). Growth of the edge pedestal in JT-60U ELMy H-mode. Plasma Phys. Control. Fus. 41, 1371.Google Scholar
Li, X.Z., Liu, B., Chen, S., Wei, Q.M. & Hora, H. (2004). Fusion cross-sections for inertial fusion energy. Laser Part. Beams 22, 469477.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospective. Laser Part. Beams 22, 512.Google Scholar
Onjun, T., Bateman, G., Kritz, A.H. & Hammett G. (2002). Models for the pedestal temperature at the edge of H-mode tokamak plasmas. Phys. Plasmas 9, 5018.Google Scholar
Osborne, T.H., Burrell, K.H., Groebner, R.J., Lao, L.L., Leonard, A.W., Maingi, R., Miller, R.L., Porter, G.D., Staebler, G.M. & Turnbull, A.D. (1999). H-mode pedestal characteristics in ITER shape discharges on DIII-D. J. Nucl. Mat. 266–269, 131137.Google Scholar
Osborne, T.H., Ferron, J.R., Groebner, R.J., Lao, L.L., Leonard, A.W., Mahdavi, M.A., Maingi, R., Miller, R.L., Turnbull, A.D., Wade, M. & Watkins, J. (2000). The effect of plasma shape on H-mode pedestal characteristics on DIII-D. Plasma Phys. Control. Fus. 42, A175.Google Scholar
Sugihara, M., Igitkhanov, Yu., Janeschitz, G., Hubbard, A.E., Kamada, Y., Lingertat, J., Osborne, T.H. & Suttrop, W. (2000). A model for H-mode pedestal width scaling using the International Pedestal Database. Nucl. Fus. 40, 1743.Google Scholar
Suttrop, W., Gruber, O., Kurzan, B., Murmann, H.D., Neuhauser, J., Schweinzer, J., Stober, J., Treutterer, W. & the ASDEX Upgrade Team. (2000). Effect of plasma shape variation on ELMs and H-mode pedestal properties in ASDEX Upgrade. Plasma Phys. Control. Fus. 42, A97.Google Scholar
Wesson, J. (1997). Tokamaks. 2nd ed. Oxford, UK: Clarendon.
Zohm, H. (1996). Edge localized modes (ELMs). Plasma Phys. Control. Fus. 38, 105.Google Scholar