Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Eliezer, S.
and
Loeb, A. Loeb
1986.
Two Dimensional Analytical Considerations of Large Magnetic and Electric Fields in Laser Produced Plasmas.
Laser and Particle Beams,
Vol. 4,
Issue. 2,
p.
249.
Hora, H.
Eliezer, S.
Farley, F. J. M.
Ghatak, A. K.
Goldsworthy, M. P.
Green, F.
Kentwell, G. W.
Lalousis, P.
Scheid, W.
Stening, R.
and
Tapalaga, S.
1986.
Laser Interaction and Related Plasma Phenomena.
p.
347.
Goldsworthy, M. P.
Green, F.
Lalousis, P.
Stening, R. J.
Eliezer, S.
and
Hora, H.
1986.
Hydrodynamic Analysis of the High Electrc Fields and Double Layers in Expanding Inhomogeneous Plasmas.
IEEE Transactions on Plasma Science,
Vol. 14,
Issue. 6,
p.
823.
Goldsworthy, M. P.
Green, F.
and
Hora, H.
1987.
A new hydrodynamic analysis of double layers.
Laser and Particle Beams,
Vol. 5,
Issue. 2,
p.
269.
Souers, P. C.
Fearon, E. M.
Mapoles, E. R.
Sater, J. D.
Collins, G. W.
Gaines, J. R.
Sherman, R. H.
and
Bartlit, J. R.
1988.
Triton Memory Time in Solid DT and Its Nuclear Polarization.
Fusion Technology,
Vol. 14,
Issue. 2P2A,
p.
855.
Cicchitelli, L.
Eliezer, S.
Goldsworthy, M. P.
Green, F.
Hora, H.
Ray, P. S.
Stening, R. J.
and
Szichman, H.
1988.
Volume ignition of laser driven fusion pellets and double layer effects.
Laser and Particle Beams,
Vol. 6,
Issue. 2,
p.
163.
Eliezer, Shalom
and
Hora, Heinrich
1989.
Dynamic Electric Fields and Double Layers in Laser-Produced Plasmas.
Fusion Technology,
Vol. 16,
Issue. 4,
p.
419.
Vaselli, M.
Palleschi, V.
and
Singh, D. P.
1989.
Hydrodynamics of supercritical region in laser ablated plasmas.
Laser and Particle Beams,
Vol. 7,
Issue. 3,
p.
589.
Singh, D. P.
Herrera, J. J. E.
and
Vaselli, M.
1989.
Effect of thermal flux inhibition on the coupling of core with hot corona in a laser irradiated plasma pellet.
Laser and Particle Beams,
Vol. 7,
Issue. 1,
p.
111.
Drska, L.
and
Vondrasek, J.
1989.
Some aspects of the unified model of non-ideal high-parameter plasmas: electron EOS and conduction coefficients.
Laser and Particle Beams,
Vol. 7,
Issue. 2,
p.
237.
Mark, James W.-K.
1991.
Recent Livermore research on ion beam fusion targets: Utilization of direct-drive efficiency during optimization of symmetry and utilization of polarized DT fuel.
Laser and Particle Beams,
Vol. 9,
Issue. 3,
p.
713.
Min, Gu
and
Hora, H.
1991.
Pulsation of laser–plasma interaction explained by density ripple buildup and relaxation for understanding smoothing by random-phase plate, ISI, and broadband.
Laser and Particle Beams,
Vol. 9,
Issue. 2,
p.
381.
Hora, Heinrich
Cicchitelli, Lorenzo
Min, Gu
Miley, George H.
Kasotakis, Gregory
and
Stening, Robert J.
1991.
Laser Interaction and Related Plasma Phenomena.
p.
95.
Miley, George H.
Hora, Heinrich
Cicchitelli, Lorenzo
Kasotakis, Gregorios V.
and
Stening, Robert J.
1991.
An Advanced Fuel Laser Fusion and Volume Compression ofp-11B Laser-Driven Targets.
Fusion Technology,
Vol. 19,
Issue. 1,
p.
43.
Khoda-Bakhsh, Rasol
Horat, Heinrich
Miley, George H.
Stening, Robert J.
and
Pieruschka, Peter
1992.
Advanced Fusion Fuel for Inertial Confinement Fusion.
Fusion Technology,
Vol. 22,
Issue. 1,
p.
50.
Khoda-Bakhsh, Rasol
Hora, Heinrich
and
Miley, George H.
1993.
Effect of D-D Reactions on the Volume Ignition of Laser-Driven D-3He Fusion Pellets.
Fusion Technology,
Vol. 24,
Issue. 1,
p.
28.
Furukane, U
Sato, K
Takiyama, K
and
Oda, T
1994.
Recombining processes in a steady plasma flow penetrating into hydrogen gas.
Journal of Physics D: Applied Physics,
Vol. 27,
Issue. 3,
p.
540.
Khoda-Bakhsh, R.
Soltanian, A.
and
Amniat-Talab, M.
2007.
Volume ignition of 3He pellets.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
Vol. 581,
Issue. 3,
p.
839.
Zhou, C. T.
He, X. T.
and
Yu, M. Y.
2008.
Laser-produced energetic electron transport in overdense plasmas by wire guiding.
Applied Physics Letters,
Vol. 92,
Issue. 15,
Ghoranneviss, M.
Malekynia, B.
Hora, H.
Miley, G.H.
and
He, X.
2008.
Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration.
Laser and Particle Beams,
Vol. 26,
Issue. 1,
p.
105.