Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T20:46:59.217Z Has data issue: false hasContentIssue false

Production of multi-MeV per nucleon ions in the controlled amount of matter mode (CAM) by using causally isolated targets

Published online by Cambridge University Press:  28 February 2007

C. STRANGIO
Affiliation:
Associazione EURATOM-ENEA sulla Fusione ENEA-Frascati, Italy
A. CARUSO
Affiliation:
Università Kore, Enna, Italy
D. NEELY
Affiliation:
Central Laser Facilities, CCLRC Rutherford Appleton Laboratory, UK
P.L. ANDREOLI
Affiliation:
Associazione EURATOM-ENEA sulla Fusione ENEA-Frascati, Italy
R. ANZALONE
Affiliation:
Associazione EURATOM-ENEA sulla Fusione ENEA-Frascati, Italy
R. CLARKE
Affiliation:
Central Laser Facilities, CCLRC Rutherford Appleton Laboratory, UK
G. CRISTOFARI
Affiliation:
Associazione EURATOM-ENEA sulla Fusione ENEA-Frascati, Italy
E. DEL PRETE
Affiliation:
Associazione EURATOM-ENEA sulla Fusione ENEA-Frascati, Italy
G. DI GIORGIO
Affiliation:
Associazione EURATOM-ENEA sulla Fusione ENEA-Frascati, Italy
C. MURPHY
Affiliation:
Central Laser Facilities, CCLRC Rutherford Appleton Laboratory, UK
C. RICCI
Affiliation:
Associazione EURATOM-ENEA sulla Fusione ENEA-Frascati, Italy
R. STEVENS
Affiliation:
Central Laser Facilities, CCLRC Rutherford Appleton Laboratory, UK
M. TOLLEY
Affiliation:
Central Laser Facilities, CCLRC Rutherford Appleton Laboratory, UK

Abstract

In several experiments, faster ions were produced from the backside of solid targets irradiated by powerful laser pulses. The ion acceleration was considered due to the negative electrostatic sheath formed on the backside of the target (TNSA), or to the expansion wave starting at the backside surface, or to the expansion wave and to its embedded electrostatic rarefaction shock. In this experiment, ions have been generated by transferring energy to a controlled amount of mass before the target become transparent by gas dynamic expansion (controlled amount of mass mode (CAM)). The targets used were thin transparent disks causally isolated from the holder to trim down, during the interaction process, unwanted effects due to the surrounding parts. Two kinds of target corresponding to a different set of parameters were designed (LARGE and SMALL). Both targets were conceived to survive, in the actual contrast conditions, to the low power pulse forerunning the giant laser pulse, bigger margin but lower performances being assigned to LARGE. For comparison standard square foils under the same focusing conditions, were also studied (LARGE-LIKE and SMALL-LIKE irradiation).

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M., Sentoku, Y., Audebert, P., Blazevic, A., Cowan, T., Fuchs, J., Gauthier, J.C., Geissel, M., Hegelich, M., Karsch, S., Morse, E., Patel, P.K. & Roth, M. (2003). Proton spectra from ultraintense laser–plasma interaction with thin foils: Experiments, theory, and simulation. Phys. Plasmas 10, 32833289.Google Scholar
Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies on laser-driven generation of fast high-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowsky, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Bandyopadhay, S., Neely, D.G., Gianluca, A., Higgintbotham, D.C., MacKenna, P., Lindau, O., Lundh, F.O. & Wahlstrom, C.G. (2006). An analysis on the wedge-shaped Thomson spectrometer developed at Central Laser Facility. Oxfordshire, UK: Rutherford Appleton Laboratory.
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., MacKinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.Google Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., MacKinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.Google Scholar
Brambrink, E., Roth, M., Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.Google Scholar
Caruso, A. & Gratton, R. (1971). On the possibility of producing 0.1 GeV ions by focusing ultrashort laser pulses on thin foils. Phys. Lett. 36A, 275276.Google Scholar
Caruso, A. & Strangio, C. (2001). Studies on nonconventional high-gain target design for ICF. Laser Part. Beams 19, 295308.Google Scholar
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.Google Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., MacKinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., &Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762081.Google Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T., &Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002-1/4.Google Scholar
Matsukado, K., Esirkepov, T., Kinoshita, K., Daido, H., Utsumi, T., Li, Z., Fukumi, A., Hayashi, Y., Orimo, S., Nishiuchi, M., Bulanov, S.V., Tajima, T., Noda, A., Iwashita, Y., Shirai, T., Takeuchi, T., Nakamura, S., Yamazaki, A., Ikegami, M., Mihara, T., Morita, A., Uesaka, M., Yoshii, K., Watanabe, T., Hosokai, T., Zhidkov, A., Ogata, A., Wada, Y. & Kubota, T. (2003). Energetic Protons from a Few-Micron Metallic Foil Evaporated by an Intense Laser Pulse. Phys. Rev. Lett. 91, 215001-1/4.Google Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.C., Audebert, P., Fuchs, J., Meyer-ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. 5, 061301-1/8.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Shurokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short laser pulse. Laser Part. Beams 22, 1924.Google Scholar
Strangio, C. & Caruso, A. (2005). Comparison of fast ions production modes by short laser pulses. Laser Part. Beams 23, 3341.Google Scholar
Strangio, C., Andreoli, P.L., Cristofari, G., Dattola, A. & Di Giorgio, G. (2004). A study for target modification induced by the prepulse in petawatt-class light-matter interaction experiments. 28th ECLIM Proceedings.
Strangio, C. (2006). Inertial Confinement, ENEA Nuclear Fusion Progress Report.
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser acceleration from ultrathin target. The laser break-out afterburner. Laser Part. Beams 24, 291298.Google Scholar
Ziener, C., Foster, P.S., Divall, E.J., Hooker, C.J., Hutchinson, M.H.R., Langley, A.J., Neely, D. (2002). The dependence of the specular reflectivity of plasma mirrors on laser intensity, pulse duration and angle of incidence. Central Laser Facility Annual Report 2001/2002.