Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Son, S.
and
Fisch, N.J.
2004.
Aneutronic fusion in a degenerate plasma.
Physics Letters A,
Vol. 329,
Issue. 1-2,
p.
76.
LEÓN, PABLO T.
ELIEZER, SHALOM
PIERA, MIREIA
and
MARTÍNEZ-VAL, JOSÉ M.
2005.
Inertial fusion features in degenerate plasmas.
Laser and Particle Beams,
Vol. 23,
Issue. 2,
p.
193.
PENG, H.S.
ZHANG, W.Y.
ZHANG, X.M.
TANG, Y.J.
ZHENG, W.G.
ZHENG, Z.J.
WEI, X.F.
DING, Y.K.
GOU, Y.
ZHOU, S.P.
and
PEI, W.B.
2005.
Progress in ICF programs at CAEP.
Laser and Particle Beams,
Vol. 23,
Issue. 2,
p.
205.
León, Pablo T.
Eliezer, Shalom
and
Martínez-Val, José M.
2005.
Fusion energy in degenerate plasmas.
Physics Letters A,
Vol. 343,
Issue. 1-3,
p.
181.
Son, S.
and
Fisch, N.J.
2006.
Ignition regime for fusion in a degenerate plasma.
Physics Letters A,
Vol. 356,
Issue. 1,
p.
72.
Son, S.
and
Fisch, N.J.
2006.
Controlled fusion with hot-ion mode in a degenerate plasma.
Physics Letters A,
Vol. 356,
Issue. 1,
p.
65.
Eliezer, S.
Murakami, M.
and
Martinez Val, J.M.
2007.
Equation of state and optimum compression in inertial fusion energy.
Laser and Particle Beams,
Vol. 25,
Issue. 4,
p.
585.
MAHDAVI, M.
and
GHAZIZADEH, S. F.
2012.
RADIATION EMISSION AND RE-ABSORPTION MECHANISMS IN DENSE MEDIUMS.
Modern Physics Letters B,
Vol. 26,
Issue. 24,
p.
1250157.
Mahdavi, M.
and
Rohaninejad, S.
2012.
Study of the Ignition Requirements and Burn Characteristics of Aneutronic Fusion in Degenerate Plasma.
Journal of Fusion Energy,
Vol. 31,
Issue. 5,
p.
437.
Mahdavi, M.
Koohrokhi, T.
and
Barfami, Z.
2012.
The Effect of Energy Leakage Probability on Burn Propagation in an Optically Thick Fusion Plasma.
ISRN High Energy Physics,
Vol. 2012,
Issue. ,
p.
1.
Mahdavi, M.
and
Gholami, A.
2013.
Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma.
Plasma Science and Technology,
Vol. 15,
Issue. 4,
p.
323.
Scott, Howard A.
2016.
Modern Methods in Collisional-Radiative Modeling of Plasmas.
Vol. 90,
Issue. ,
p.
81.
Scott, H. A.
2017.
Non-LTE modeling of radiatively driven dense plasmas.
Vol. 1811,
Issue. ,
p.
050004.
Nazirzadeh, M.
Khanbabaei, B.
and
Ghasemizad, A.
2017.
The investigation of inertial fusion burning requirements of deuterium-helium3 in degenerate plasma.
Physics of Plasmas,
Vol. 24,
Issue. 8,
Rajabnejad, M.
Ghasemizad, A.
and
Khoshbinfar, S.
2018.
The Essential Requirements of Transition to Non-equilibrium Burn Stage of DD Fuel in Simple Spherical Targets.
Journal of Fusion Energy,
Vol. 37,
Issue. 6,
p.
291.
Goshadze, R.M.
Berezhiani, V.I.
and
Osmanov, Z.
2019.
On the filamentation instability in degenerate relativistic plasmas.
Physics Letters A,
Vol. 383,
Issue. 10,
p.
1027.
Mahdavi, M.
Gholami, A.
and
Ghodsi, O.N.
2020.
Ignition condition for degenerate plasma in magneto-inertial fusion.
Chinese Journal of Physics,
Vol. 68,
Issue. ,
p.
596.
Berezhiani, V. I.
Osmanov, Z. N.
Mahajan, S. M.
and
Mikeladze, S. V.
2021.
Solitary structure formation and self-guiding of electromagnetic beam in highly degenerate electron plasma.
Physics of Plasmas,
Vol. 28,
Issue. 5,
Belloni, Fabio
and
Batani, Katarzyna
2022.
Multiplication Processes in High-Density H-11B Fusion
Fuel.
Laser and Particle Beams,
Vol. 2022,
Issue. ,
Mahdavi, Mohammad
Bakhtiyari, Majid
and
Najafi, Alireza
2023.
Investigation of proton-boron-11 degenerate fuel pellet plasma ignition conditions by proton beam driver in fast ignition process.
Indian Journal of Physics,
Vol. 97,
Issue. 4,
p.
1277.