Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T08:42:56.919Z Has data issue: false hasContentIssue false

Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets

Published online by Cambridge University Press:  23 January 2015

S. M. Weng*
Affiliation:
Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, China
M. Murakami
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
Z. M. Sheng
Affiliation:
Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, China SUPA, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
*
Address correspondence and reprint requests to: S. M. Weng, Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail: wengsuming@gmail.com

Abstract

The generation of fast ion beams in the hole-boring radiation pressure acceleration by intense laser pulses has been studied for targets with different ion components. We find that the oscillation of the longitudinal electric field for accelerating ions can be effectively suppressed by using a two-ion-species target, because fast ions from a two-ion-species target are distributed into more bunches and each bunch bears less charge. Consequently, the energy spread of ion beams generated in the hole-boring radiation pressure acceleration can be greatly reduced down to 3.7% according to our numerical simulation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Jabłoński, S., Parys, P., Szydłowski, A., Fuchs, J. & Mancic, A. (2010). Production of high-intensity proton fluxes by a 2ω Nd: glass laser beam. Laser Part. Beams 28, 575583.CrossRefGoogle Scholar
Badziak, J., Mishra, G., Gupta, N.K. & Holkundkar, A.R. (2011). Generation of ultraintense proton beams by multi-ps circularly polarized laser pulses for fast ignition-related applications. Phys. Plasmas 18, 053108.Google Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Haines, M.G., Willi, O., MacKinnon, A.J., Patel, P., Gizzi, L.A., Galimberti, M., Clarke, R.J., Pegoraro, F., Ruhl, H. & Bulanov, S. (2002). Electric field detection in laser plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 22142220.Google Scholar
Borghesi, M., Sarri, G., Cecchetti, C.A., Kourakis, I., Hoarty, D., Stevenson, R.M., James, S., Brown, C.D., Hobbs, P., Lockyear, J., Morton, J., Willi, O., Jung, R. & Dieckmann, M. (2010). Progress in proton radiography for diagnosis of ICF-relevant plasmas. Laser Part. Beams 28, 277284.Google Scholar
Cui, Y.Q., Wang, W.M., Sheng, Z.M., Li, Y.T. & Zhang, J. (2013). Quasimonoenergetic proton bunches generation from doped foil targets irradiated by intense lasers. Phys. Plasmas 20, 024502.Google Scholar
Daido, H., Nishiuchi, M. & Pirozhkov, A.S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401 and references therein.Google Scholar
Fourkal, E., Velchev, I., Fan, J., Luo, W. & Ma, C.-M. (2007). Energy optimization procedure for treatment planning with laser-accelerated protons. Med. Phys. 34, 577584.CrossRefGoogle ScholarPubMed
Haberberger, D., Tochitsky, S. & Fiuza, F. (2012). Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys. 8, 9599.Google Scholar
Hegelich, B.M., Jung, D., Albright, B.J., Fernandez, J.C., Gautier, D.C., Huang, C., Kwan, T.J., Letzring, S., Palaniyappan, S., Shah, R.C., Wu, H.-C., Yin, L., Henig, A., Hörlein, R., Kiefer, D., Schreiber, J., Yan, X.Q., Tajima, T., Habs, D., Dromey, B. & Honrubia, J.J. (2011). Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition. Nucl. Fusion 51, 083011.Google Scholar
Kar, S., Kakolee, K.F., Qiao, B., Macchi, A., Cerchez, M., Doria, D., Geissler, M., McKenna, P., Neely, D., Osterholz, J., Prasad, R., Quinn, K., Ramakrisna, B., Sarri, G., Willi, O., Yuan, X.Y., Zepf, M. & Borghesi, M. (2012). Ion acceleration in multispecies targets driven by intense laser radiation pressure. Phys. Rev. Lett. 109, 185006.Google Scholar
Kodama, R., Takahashi, K., Tanaka, K.A., Tsukamoto, M., Hashimoto, H., Kato, Y. & Mima, K. (1996). Study of Laser-Hole Boring into Overdense Plasmas. Phys. Rev. Lett. 77, 49064909.Google Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.CrossRefGoogle ScholarPubMed
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157162.Google Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002.Google Scholar
Norreys, P.A., Fews, A.P., Beg, F.N., Bell, A.R., Dangor, A.E., Lee, P., Nelson, M.B., Schmidt, H., Tatarakis, M. & Cable, M.D. (1998). Neutron production from picosecond laser irradiation of deuterated targets at intensities of 1019 W cm−2. Plasma Phys. Contr. Fusion 40, 175182.Google Scholar
Robinson, A.P.L., Gibbon, P., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2009 a). Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Control. Fusion 51, 024004.Google Scholar
Robinson, A.P.L., Kwon, D.H. & Lancaster, K. (2009 b). Hole-boring radiation pressure acceleration with two ion species. Plasma Phys. Contr. Fusion 51, 095006.Google Scholar
Robinson, A.P.L. (2011). Production of high energy protons with hole-boring radiation pressure acceleration. Phys. Plasmas 18, 056701.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Schlegel, T., Naumova, N., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys. Plasmas 16, 083103.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Weng, S.M., Mulser, P. & Sheng, Z.M. (2012 a). Relativistic critical density increase and relaxation and high-power pulse propagation. Phys. Plasmas 19, 022705.Google Scholar
Weng, S.M., Murakami, M., Mulser, P. & Sheng, Z.M. (2012 b). Ultra-intense laser pulse propagation in plasmas: from classic hole-boring to incomplete hole-boring with relativistic transparency. New J. Phys. 14, 063026.Google Scholar
Weng, S.M., Murakami, M., Azechi, H., Wang, J.M., Tasoko, N., Che, M., Sheng, Z.M., Mulser, P., Yu, W. & Shen, B.F. (2014). Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in inhomogeneous plasmas using tailored laser pulses. Phys. Plasmas 21, 012705.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernández, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.Google Scholar
Yu, T.P., Pukhov, A., Shvets, G. & Chen, M. (2010). Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil. Phys. Rev. Lett. 105, 065002.Google Scholar