Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T16:43:16.647Z Has data issue: false hasContentIssue false

Relativistic self-distortion of a laser pulse and ponderomotive acceleration of electrons in an axially inhomogeneous plasma

Published online by Cambridge University Press:  12 April 2010

Rohtash Singh*
Affiliation:
Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
A.K. Sharma
Affiliation:
Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
V.K. Tripathi
Affiliation:
Physics Department, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: Rohtash Singh, Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: sahabrao@gmail.com

Abstract

Relativistic self distortion of a Gaussian laser pulse in inhomogeneous plasma in one dimension is investigated. The relativistic mass effect causes different portions of the pulse to travel with different group velocities leading to the steepening of the pulse front and broadening of the rear. This asymmetry created in the pulse shape gives rise to stronger ponderomotive force on electrons at the front and weaker at the rear. The fast moving electrons under this force are shown to have very significant net energy gain. The energy gain increases with the density scale-length and then saturates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A., Platonov, K. & Kawata, S. (2009). Ion acceleration by short high intensity laser pulse in small target sets. Laser Part. Beams 27, 449457.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser driven-generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.CrossRefGoogle Scholar
Balakirev, V.A., Karas, I.V., Levchenko, V.D. & Bornatici, M. (2004). Charged particle acceleration by an intense wake-field excited in plasmas by either laser pulse or relativistic electron bunch. Laser Part. Beams 22, 383392.CrossRefGoogle Scholar
Balakirev, V.A., Karas, I.V. & Levchenko, V.D. (2001). Plasma wakefield excitation relativistic electron bunches and charged particle acceleration in the presence of external magnetic field. Laser Part. Beams 19, 597604.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Dyson, A. & Dangor, A.E. (1991). Laser beat wave acceleration of particles. Laser Part. Beams 9, 619631.CrossRefGoogle Scholar
Ebrahim, N.A. (1994). Optical mixing of laser light in a plasma and electron acceleration by relativistic electron plasma waves. J. Appl. Phys. 76, 76457647.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci 24, 252288.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B., Shadwick, B.A., Wurtele, J.S. & Leemans, W.P. (2000). Nonlinear theory of nonparaxial laser pulse propagation in plasma channels. Phys. Rev. Lett. 84, 30813084.CrossRefGoogle ScholarPubMed
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.CrossRefGoogle ScholarPubMed
Faure, J., Glince, Y., Santos, J.J., Ewald, F., Rousseau, J.-P., Kiselev, S., Pukhov, A., Hosokai, T. & Malka, V. (2005). Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett. 95, 205003.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, C.S., Van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nat. 431, 538541.CrossRefGoogle ScholarPubMed
Gordon, D.F., Hafizi, B., Penano, J.R., Hubbard, R.F. & Ting, A. (2003). Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. Phys. Rev. Lett. 90, 215001.CrossRefGoogle ScholarPubMed
Hartemann, F.V., Fochs, S.N., Le Sage, G.P., Luhmann, N.C., Woodwrth, J.G., Perry, M.D., Chen, Y.J. & Kermen, A.K. (1995). Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus. Phys. Rev. E 51, 48334843.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H., Blazevicv, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hogan, M.J., Bames, C.D., Clayton, C.E., Decker, F.J., Deng, S., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C.T., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K.A., Mori, W.B., Mugglli, P., O'connell, C.L., Oz, E., Siemann, R.H. & Walz, D. (2005). Multi-GeV energy gain in a plasma wakefield-accelerator. Phys. Rev. Lett. 95, 054802.CrossRefGoogle Scholar
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma inter-action. Laser Part. Beams 24, 455463.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Azizi, N., Malekynia, B., Ghoranneviss, M. & He, X.T. (2009). Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy without radioactivity. Laser Part. Beams 27, 491496.CrossRefGoogle Scholar
Joshi, C. (2007). The development of laser and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501.CrossRefGoogle Scholar
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Sakai, K., Nakajima, K., Masuda, S., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andrew, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser. Laser Part. Beams 23, 6167.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.CrossRefGoogle Scholar
Kumar, A., Gupta, M.K. & Sharma, R.P. (2006). Effect of ultra intense laser on the propagation of electron plasma wave in relativistic and ponderomotive regime and particle acceleration. Laser Part. Beams 24, 403409.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., Gammino, S., Torrisi, L., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2008). Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.CrossRefGoogle Scholar
Li, B., Ishiguro, S.M., Skoric, M.M., Takamaru, H. & Sato, T. (2004). Acceleration of high-quality well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma. Laser Part. Beams 22, 307314.Google Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (1994). Interaction of Electromagnetic Waves with Electron Beams and Plasma. Singapore: World Scientific.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2005). Ponderomotive effect on electron acceleration by plasma wave and betatron resonance and short pulse laser. Phys. of Plasmas 12, 043103/8.CrossRefGoogle Scholar
Lotov, K.V. (2001). Laser wakefield acceleration in narrow plasma filled channels. Laser Part. Beams 19, 219222.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nat. 431, 535538.CrossRefGoogle ScholarPubMed
Mora, P. & Antonsen, T.M. (1997). Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas. Phys. Plasmas 4, 217229.CrossRefGoogle Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Nakamura, K. (2000). Particle acceleration by ultraintense laser interactions with beam and plasmas. Laser Part. Beams 18, 519528.Google Scholar
Nakamura, T., Mima, K., Sakagami, H., Johzaki, T. & Nagatomo, H. (2008). Generation and confinement of high energy electrons generated by irradiation of ultra-intense short laser pulses onto cone targets. Laser Part. Beams 26, 207212.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokolink, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andrew, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Prasad, R., Singh, R. & Tripathi, V.K. (2009). Effect of an axial magnetic field and ion space charge on laser beat wave acceleration and surfatron acceleration of electrons. Laser Part. Beams 27, 459464.CrossRefGoogle Scholar
Pukhov, A., Gordienko, S., Kiselev, S. & Kostyukov, I. (2004). The bubble regime of laser-plasma acceleration: monoenergetic electrons and scalability. Plasma Phys. Control. Fusion 44, B179B186.CrossRefGoogle Scholar
Pukhov, A. & Meyer-Ter-Vehn, J. (1996). Relativistic magnetic self-channeling of light in near-critical plasma: three dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 39753978.CrossRefGoogle ScholarPubMed
Reitsma, A.J.W. & Jaroszynski, D.A. (2004). Coupling of longitudinal and transverse motion of accelerated electrons in laser wakefield acceleration. Laser Part. Beams 22, 407413.CrossRefGoogle Scholar
Reitsma, A.J.W., Cairns, R.A., Bingham, R. & Jaroszynski, D.A. (2005). Efficiency and energy spread in laser-wakefield acceleration. Phys. Rev. Lett. 94, 085004.CrossRefGoogle ScholarPubMed
Robinson, C.G., Geddes, C.G.R., Esarey, E., Leemans, W., Michel, P., Nagler, B., Nakakmura, K., Plateau, G., Schroeder, C.B., Shadwick, B., Toth, C., Tilborg, J.V., Hooker, S., Bruhwiler, D.L., Cary, J.R. & Michel, E. (2006). Low energy spread 100MeV-1 GeV electron bunches from laser wakefield acceleration. Loasis, Proceeding of LINAC 2006, Tennessee.Google Scholar
Shi, Y.-J. (2007). Laser electron accelerator in plasma with adiabatically attenuating density. Laser Part. Beams 25, 259265.CrossRefGoogle Scholar
Sprangle, P. & Esarey, E. (1992). Interaction of ultrahigh laser fields with beams and plasmas. Phys. Fluids B 4, 22412248.CrossRefGoogle Scholar
Sprangle, P., Penano, J.R. & Hafizi, B. (2001). Apparent superluminal propagation of a laser pulse in a dispersive medium. Phys. Rev. E 64 026504.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. & Ting, A. (1990). Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64, 20112014.CrossRefGoogle ScholarPubMed
Tazima, T. & Dawson, M. (1979). Laser Electron Accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Upadhyay, A., Tripathi, V.K. & Pant, H.C. (2001). Pulse front sharpening of a laser beam in plasma. Phys. Scr. 63, 326328.CrossRefGoogle Scholar
Yu, W., Bychenkov, V., Senyoku, Y., Yu, M.Y., Sheng, Z.M. & Mima, K. (2000). Electron acceleration by a short relativistic laser pulse at the front of solid targets. Phys. Rev. Lett. 85, 570573.CrossRefGoogle Scholar