Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T00:14:23.426Z Has data issue: false hasContentIssue false

Resonant enhancement of electron energy by frequency chirp during laser acceleration in an azimuthal magnetic field in a plasma

Published online by Cambridge University Press:  19 June 2008

K.P. Singh*
Affiliation:
Simutech, Gainesville, Florida
H.K. Malik
Affiliation:
Plasma Waves and Particle Acceleration Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: Kunwar Pal Singh, Simutech, 3521 SW 31st. Drive, Gainesville, FL 32608. E-mail:k_psingh@yahoo.com

Abstract

Electron acceleration by a chirped laser pulse in an azimuthal magnetic field in a plasma has been studied. The betatron resonance saturates and the electrons start losing energy beyond a specific point of time without a frequency chirp. The resonance can be maintained for a longer duration and the energy of the electrons can be enhanced if a suitable frequency chirp is introduced. The duration of interaction increases for a lower plasma density or a lower initial electron energy which causes increase in the electron energy gain. The value of magnetic field required for resonance increases with an increase in plasma density and with a decrease in initial electron energy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dias, J.M., Stenz, C., Lopes, N., Badiche, X., Blasco, F., Santos, A.D., Silva, L., Oliveira, E., Mysyrowicz, A., Antonetti, A. & Mendonça, J.T. (1997). Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts. Phys. Rev. Lett. 78, 47734776.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.CrossRefGoogle ScholarPubMed
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fomyts'kyi, M., Chiu, C., Downer, M. & Grigsby, F. (2005). Controlled plasma wave generation and particle acceleration through seeding of the forward Raman scattering instability. Phys. Plasmas 12, 023103.CrossRefGoogle Scholar
Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 47724775.CrossRefGoogle Scholar
Geddes, C.G.R., Toth, C.S., Tilborg, J. van, Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.CrossRefGoogle ScholarPubMed
Gordon, D.F., Hafizi, B., Hubbard, R.F., Peñano, J.R., Sprangle, P. & Ting, A. (2003). Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. Phys. Rev. Lett. 90, 215001.CrossRefGoogle ScholarPubMed
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.CrossRefGoogle Scholar
Haines, M.G. (2001). Generation of an axial magnetic field from photon spin. Phys. Rev. Lett. 87, 135005.CrossRefGoogle ScholarPubMed
Kalashnikov, M., Osvay, K. & Sandner, W. (2007). High-power Ti:Sapphire lasers: Temporal contrast and spectral narrowing. Laser Part. Beams 25, 219223.CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kostyukov, I.Y., Shvets, G., Fisch, N.J. & Rax, J.M. (2002). Magnetic-field generation and electron acceleration in relativistic laser channel. Phys. Plasmas 9, 636.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Malik, H.K., Kumar, S. & Nishida, Y. (2007). Electron acceleration by laser produced wake field: Pulse shape effect. Optics Comm. 280, 417.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535538.CrossRefGoogle ScholarPubMed
Mangles, S.P.D., Walton, B.R., Tzoufras, M., Najmudin, Z., Clarke, R.J., Dangor, A.E., Evans, R.G., Fritzler, S., Gopal, A., Hernandez-Gomez, C., Mori, W.B., Rozmus, W., Tatarakis, M., Thomas, A.G.R., Tsung, F.S., Wei, M.S. & Krushelnick, K. (2005). Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Phys. Rev. Lett. 94, 245001.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Pukhov, A., Sheng, Z.M. & Meyer-ter-Vehn, J. (1999). Particle acceleration in relativistic laser channels, Phys. Plasmas 6, 28472854.CrossRefGoogle Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (2002). Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B: Lasers Opt. 74, 355361.CrossRefGoogle Scholar
Qiao, B., He, X.T. & Zhu, S.-P. (2006). Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction. Phys. Plasmas 13, 053106-1-7.CrossRefGoogle Scholar
Santala, M.I.K., Najmudin, Z., Clark, E.L., Tatarakis, M., Krushelnick, K., Dangor, A.E., Malka, V., Faure, J., Allott, R. & Clarke, R.J. (2001). Observation of a hot high-current electron beam from a self-modulated laser wakefield accelerator. Phys. Rev. Lett. 86, 12271230.CrossRefGoogle ScholarPubMed
Schmitz, M. & Kull, H.-J. (2002). Single-electron model of direct laser acceleration in plasma channels. Laser Phys. 12, 443.Google Scholar
Schroeder, C.B., Esarey, E., Geddes, C.G.R., Toth, C.S., Shadwick, B.A., Tilborg, J. van, Faure, J. & Leemans, W.P. (2003). Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators. Phys. Plasmas 10, 2039.CrossRefGoogle Scholar
Shi, Y.J. (2007) Laser electron accelerator in plasma with adiabatically attenuating density. Laser Part. Beams 25, 259265.CrossRefGoogle Scholar
Singh, K.P. (2004). Electron acceleration by a circularly polarized laser pulse in a plasma. Phys. Plasmas 11, 39923996.CrossRefGoogle Scholar
Tanimoto, M., Kato, S., Miura, E., Saito, N., Koyama, K. & Koga, J.K. (2003). Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields. Phys. Rev. E 68, 026401-1-7.CrossRefGoogle ScholarPubMed
Ting, A., Kaganovich, D., Gordon, D.F., Hubbard, R.F. & Sprangle, P. (2005). Generation and measurements of high energy injection electrons from the high density laser ionization and ponderomotive acceleration. Phys. Plasmas 12, 010701-1-4.CrossRefGoogle Scholar
Wagner, U., Tatarakis, M., Gopal, A., Beg, F.N., Clark, E.L., Dangor, A.E., Evans, R.G., Haines, M.G., Mangles, S.P.D., Norreys, P.A., Wei, M.-S., Zepf, M. & Krushelnick, K. (2004). Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas. Phys. Rev. E 70, 026401.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar