Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T16:35:49.312Z Has data issue: false hasContentIssue false

Second and third harmonics generation in the interaction of strongly magnetized dense plasma with an intense laser beam

Published online by Cambridge University Press:  17 April 2012

Mohammad Ghorbanalilu*
Affiliation:
Physics Department, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran; Plasma & Condensed Matter Computational Research Lab, Azarabaijan University of Tabiat Moallem, Tabriz, Iran
*
Address correspondence and reprint requests to: Mohammad Ghorbanalilu, Physics Department, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran. E-mail: mh-alilo@yahoo.com

Abstract

The goal of this theory is to study the conversion of a fraction of a laser beam to its phase-mismatch second and third harmonics. This conversion takes place by focusing an intense laser beam into a transversely magnetized plasma, as a nonlinear medium. The influence of the polarization field is considered, however, the plasma density is below the critical density. It has already been revealed that for dense plasma, the second and third harmonics efficiencies decreased with density increasing in the presence of a sufficiently strong magnetic field. This result is in contrast to the under dense and weakly magnetized plasma, which the harmonics efficiencies increased with density increasing. It is shown that the harmonics radiation cut-off, when the magnetic field increases up until the saturation strength Bsat. In addition, the results indicated that the average phase-mismatch third harmonic conversion efficiency is a little smaller than the phase-match case reported for non-magnetized plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P., Eder, D.C. & Wilks, S.C. (1991). X-ray lasing by opticalfield-induced ionization. Phys. Rev. Lett. 66, 2589.CrossRefGoogle ScholarPubMed
Corkum, P.B. (1993). Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994.CrossRefGoogle ScholarPubMed
Esarey, E., Ting, A., Sprangle, P., Umsladter, D. & Liu, X. (1993). Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci. 21, 95.CrossRefGoogle Scholar
Gibbon, P. (1997). High-order harmonic generation in plasmas. IEEE Quant. Electron. 33, 1915.CrossRefGoogle Scholar
Gorbunov, L.M., Mora, P. & Antonsen, T.M. (1997). Quasistatic magnetic field generated by a short laser pulse in an underdense plasma. Phys. Plasmas 4, 4358.CrossRefGoogle Scholar
Jha, P., Kumar, P., Upadhand, A.K. & Raj, G. (2005). Electric and magnetic wakefields in a plasma channel. Phys. Rev. ST. Accel, Beam 8, 071301.Google Scholar
Jha, P., Mishra, R.K., Raj, G. & Upadhyay, A.K. (2007). Second harmonic generation in laser magnetized plasma interaction. Phys. Plasmas 14, 053107.CrossRefGoogle Scholar
Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F., Scrinzi, A., Westerwalbesloh, Th., Kleineberg, U., Heinzmann, U., Drescher, M. & Krausz, F. (2004). Atomic transient recorder. Nat. 427, 817.Google ScholarPubMed
Lemoff, B.E., Yin, G.Y., Gordan, C.L. III, Barty, C.P.J. & Harris, S.E. (1995). Demonstration of a 10-Hz Femtosecond-Pulse-Driven XUV Laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 1574.CrossRefGoogle Scholar
Lin, H., Chen, L.M. & Kieffer, J.C. (2002). Harmonic generation of ultraintense laser pulses in underdense plasma. Phys. Rev. E. 65, 036414.CrossRefGoogle ScholarPubMed
Mori, W.B. (1993). Generation of coherent radiation using plasma. IEEE Trans. Plasma Sci. 21, 1.Google Scholar
Mori, W.B., Decker, C.D. & Leemans, W.P. (1993). Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas. IEEE Trans. Plasma Sci. 21, 110.CrossRefGoogle Scholar
Rax, J.M. & Fisch, N.J. (1992). Third-harmonic generation with ultrahigh-intensity laser pulses. Phys. Rev. Lett. 69, 772.CrossRefGoogle ScholarPubMed
Salieres, P. & Lewenstein, M. (2001). Generation of ultrashort coherent XUV pulses by harmonic conversion of intense laser pulses in gases: Towards attosecond pulses. Meas. Sci. Technol. 12, 1818.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. & Ting, A. (1990). Nonlinear theory of intense laser -plasma interaction. Phys. Rev. Lett. 64, 2011.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C.Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L. & Mori, W.B. (1993). Odd harmonic generation of ultra-intense laser pulses reflected from an overdense plasma. IEEE Trans. Plasma Sci. 21, 120.CrossRefGoogle Scholar