Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T08:30:25.607Z Has data issue: false hasContentIssue false

Self-pumped SBS effect of high-power super-Gaussian-shaped laser pulses

Published online by Cambridge University Press:  09 December 2015

Yulei Wang
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
Xuehua Zhu
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
Zhiwei Lu*
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
Hengkang Zhang
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
*
Address correspondence and reprint requests to: Zhiwei Lu, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: zw_lu@sohu.com

Abstract

Most of the high-energy laser systems deliver temporally super-Gaussian-shaped laser pulses. The propagation properties of this kind of pulses in a nonlinear medium are studied in this paper. There is Stokes component in the sideband spectrum of super-Gaussian-shaped pulses, and the frequency difference between the Stokes component and the center frequency is equals to the Brillouin frequency of the nonlinear medium. When the laser is reflected by optical elements in the light path, Stokes component in the reflected light can be amplified by the subsequent part of the laser pulse and excite stimulated Brillouin scattering (self-pumped SBS). The self-pumped SBS is studied theoretically and experimentally, and the experimental results agreed well with the calculated results. The simulation results show that lower-order super-Gaussian-shaped pulses are more suitable for suppressing the self-pumped SBS and of great benefit to the energy delivering of the high-power laser pulses. To the best of our knowledge, this is the first time to experimentally demonstrate the self-pumped SBS of high-power super-Gaussian-shaped laser pulses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ajiya, M., Mahdi, M.A., Al-Mansoori, M.H., Shee, Y.G., Hitam, S. & Mokhtar, M. (2009). Reduction of stimulated Brillouin scattering threshold through pump recycling technique. Laser Phys. Lett. 6, 535538.CrossRefGoogle Scholar
Al-Asadi, H., Al-Mansoori, M., Ajiya, M., Hitam, S., Saripan, M. & Mahdi, M. (2010). Effects of pump recycling technique on stimulated Brillouin scattering threshold: A theoretical model. Opt. Express 18, 2233922347.Google Scholar
Bai, J.H., Shi, J.W., Ouyang, M., Chen, X.D., Gong, W.P., Jing, H.M., Liu, J. & Liu, D.H. (2008). Method for measuring the threshold value of stimulated Brillouin scattering in water. Opt. Lett. 33, 15391541.CrossRefGoogle ScholarPubMed
Boyd, R.W., Rzazewski, K. & Narum, P. (1990). Noise initiation of stimulated Brillouin scattering. Phys. Rev. A 42, 55145521.Google Scholar
Dement'ev, A.S., Demin, I., Murauskas, E. & Slavinskis, S. (2011). Compression of pulses during their amplification in the field of a focused counterpropagating pump pulse of the same frequency and width in media with electrostriction nonlinearity. Quantum Electron. 41, 153.Google Scholar
Gao, W., Lu, Z.W., Wang, S.Y., He, W.M. & Hasi, W.L.J. (2010). Measurement of stimulated Brillouin scattering threshold by the optical limiting of pump output energy. Laser Part. Beams 28, 179184.CrossRefGoogle Scholar
Guo, S.F., Lu, Q.S., Cheng, X.A., Zhou, P., Deng, S.Y. & Yin, Y. (2005). Influence of Stokes component in reflected light on stimulated Brillouin scattering process. Acta Phys. Sin. 53, 18311835.Google Scholar
Hohenberger, M., Theobald, W., Hu, S.X., Anderson, K.S. & Betti, R. (2014). Shock-ignition relevant experiments with planar targets on OMEGA. Phys. Plasmas 21, 022702.Google Scholar
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Doppner, T., Hinkel, D.E., Hopkins, L.F.B., Kline, J.L., Le Pape, S., Ma, T., MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T. & Tommasini, R. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343348.Google Scholar
Kong, H.J., Lee, S.K., Lee, D.W. & Guo, H. (2005). Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation. Appl. Phys. Lett. 86, 051111.CrossRefGoogle Scholar
Kong, H.J., Shin, J.S., Yoon, J.W. & Beak, D.H. (2009). Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors. Laser Part. Beams 27, 179184.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.CrossRefGoogle Scholar
Omatsu, T., Kong, H.J., Park, S., Cha, S., Yoshida, H., Tsubakimoto, K., Fujita, H., Miyanaga, N., Nakatsuka, M., Wang, Y., Lu, Z., Zheng, Z., Zhang, Y., Kalal, M., Slezak, O., Ashihara, M., Yoshino, T., Hayashi, K., Tokizane, Y., Okida, M., Miyamoto, K., Toyoda, K., Grabar, A.A., Kabir, M.M., Oishi, Y., Suzuki, H., Kannari, F., Schaefer, C., Pandiri, K.R., Katsuragawa, M., Wang, Y.L., Lu, Z.W., Wang, S.Y., Zheng, Z.X., He, W.M., Lin, D.Y., Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Sharma, R.P., Sharma, P., Rajput, S., Bhardwaj, A.K., Zhu, C.Y. & Gao, W. (2012). The Current Trends in SBS and phase conjugation. Laser Part. Beams 30, 117174.Google Scholar
Radha, P.B., Betti, R., Boehly, T.R., Delettrez, J.A., Edgell, D.H., Goncharov, V.N., Igumenshchev, I.V., Knauer, J.P., Marozas, J.A., Marshall, F.J., McCrory, R.L., Meyerhofer, D.D., Regan, S.P., Sangster, T.C., Seka, W., Skupsky, S., Solodov, A.A., Stoeckl, C., Theobald, W., Frenje, J.A., Casey, D.T., Li, C.K. & Petrasso, R.D. (2011). Inertial confinement fusion using the omega laser system. IEEE Trans. Plasma Sci. 39, 10071014.Google Scholar
Skeldon, M.D. & Bahr, R. (1991). Stimulated rotational raman-scattering in air with a high-power broad-band laser. Opt. Lett. 16, 366368.Google Scholar
Wilcox, R.B., Behrendt, W., Browning, D.F., Speck, D.R. & VanWonterghem, B.M. (1993). Fusion laser oscillator and pulse-forming system using integrated optics. Proc. SPIE 1870, 5363.Google Scholar
Yoshida, H., Hatae, T., Fujita, H., Nakatsuka, M. & Kitamura, S. (2009). A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength. Opt. Express 17, 1365413662.Google Scholar
Zeringue, C., Dajani, I., Naderi, S., Moore, G.T. & Robin, C. (2012). A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light. Opt. Express 20, 2119621213.CrossRefGoogle ScholarPubMed
Zhu, X., Lu, Z. & Wang, Y. (2015). High stability, single frequency, 300 mJ, 130 ps laser pulse generation based on stimulated Brillouin scattering pulse compression. Laser Part. Beams 33, 1115.Google Scholar
Zhu, X., Wang, Y. & Lu, Z. (2014). Measurement of the threshold of nonfocusing-pumped stimulated Brillouin scattering based on temporal characteristic of the reflected pulse. Appl. Phys. Express 7, 122601.Google Scholar
Zhu, X.H., Lu, Z.W. & Wang, Y.L. (2012). A new method for measuring the threshold of stimulated Brillouin scattering. Chin. Phys. B 21, 074205.CrossRefGoogle Scholar