Article contents
Shock interaction with a heavy gas cylinder: Emergence of vortex bilayers and vortex-accelerated baroclinic circulation generation
Published online by Cambridge University Press: 03 March 2004
Abstract
We present a numerical study to late times of a Richtmyer–Meshkov environment: a weak shock (M = 1.095) interacting with a heavy cylindrical bubble. The bubble interface is modeled as a diffuse interfacial transition layer (ITL) with finite thickness. Our simulation with the piecewise parabolic method (PPM) yields very good agreement in large- and intermediate-scale features with Jacobs' experiment (Jacobs, 1993). We note the primary circulation enhancement deposited baroclinically upon the incident shock wave, and significant secondary baroclinic circulation enhancement, first observed in Zabusky and Zhang (2002). We propose that this vortex-accelerated circulation deposition is universal. These baroclinic processes are mediated by a strong gradient intensification and stretching of the ITL and result in close-lying vortex bilayers (VBLs) and the emergence of vortex projectiles (VPs). These account for the elongated, kidney-shaped morphology of the rolled up bubble domain at late times.
Keywords
- Type
- Research Article
- Information
- Copyright
- © 2003 Cambridge University Press
References
REFERENCES
- 11
- Cited by