Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T03:36:47.827Z Has data issue: false hasContentIssue false

Short-pulse laser ablation of materials at high intensities: Influence of plasma effects

Published online by Cambridge University Press:  23 March 2010

Dimitri Batani*
Affiliation:
Dipartimento di Fisica “G. Occhialini”, Università di Milano Bicocca, Milano, Italy
*
Address correspondence and reprint requests to: Dimitri Batani, Dipartimento di Fisica “G. Occhialini”, Università di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy. E-mail: batani@mib.infn.it

Abstract

The paper is devoted to the study of plasma effects, which are present in laser ablation at relatively high intensity (I ≥ 1012 W/cm2). We start from the classical “two temperature model” of laser ablation (“cold solid approximation”) and we extend it to higher intensities where laser-induced heating and laser-induced changes in the background material become relevant. The new model is also compared to experimental results on laser ablation of solid targets from short pulse lasers at high intensities (up to 1014 W/cm2). Finally, we consider the effects on laser-ablation of laser-generated fast electrons.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alti, K. & Khare, A. (2006 a). Sculpted pulsed indium atomic beams via selective laser ablation of thin film. Laser Part. Beams 24, 469473.CrossRefGoogle Scholar
Alti, K. and Khare, A. (2006 b). Low-energy low-divergence pulsed indium atomic beam by laser ablation. Laser Part. Beams 24, 4753.Google Scholar
Atzeni, S. (1995). Thermonuclear burn performance of volume-ignited and centrally ignited bare deuterium-tritium microspheres. Jpn. J. Appl. Phys. 34, 1980.CrossRefGoogle Scholar
Ballard, A. & Bonin, K. (2001). Accurate timing of a particle beam using laser ablation. Laser Part. Beams 19, 237239.CrossRefGoogle Scholar
Bashir, S., Shahid Rafique, M. & Ul-Haq, F. (2007). Laser ablation of ion irradiated CR-39. Laser Part. Beams 25, 181191.Google Scholar
Batani, D. (2002). Transport in dense matter of relativistic electrons produced in ultra-high-intensity laser interactions. Laser Part. Beams 20, 321336.Google Scholar
Batani, D., Stabile, H., Ravasio, A., Lucchini, G., Ullschmied, J., Krousky, E., Juha, L., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A.H., Nishimura, H. & Ochi, Y. (2003). Ablation pressure scaling at short laser wavelength. Phys. Rev. E 68, 067403.Google Scholar
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Fews, A.P., Glinsky, M.E., Hammel, B.A., Lee, P., Norreys, P.A. & Tatarakis, M. (1997). A study of picosecond laser–solid interactions up to 1019 W cm−2. Phys. Plasmas 4, 447.CrossRefGoogle Scholar
Beilis, I. (2007). Laser plasma generation and plasma interaction with ablative target. Laser Part. Beams 25, 5363.Google Scholar
Chichkov, B.N., Momma, C., Nolte, S., von Alvensleben, F. & Tunnermann, A. (1996). Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109111.Google Scholar
Di Bernardo, A., Batani, D., Courtois, C., Cros, B. & Matthieussent, G. (2003). High intensity ultra short laser induced ablation of metal targets in the presence of ambient gas. Laser Part. Beams 21, 5964.Google Scholar
Eidmann, K., Meyer-ter-Vehn, J., Schlegel, T. & Huller, S. (2000). Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E 62, 1202.Google Scholar
Faenov, A., Magunov, A., Pikuz, T., Batani, D., Lucchini, G., Canova, F. & Piselli, M. (2004). Bright, point X-ray source based on a commercial portable 40 ps Nd YAG laser system. Laser Part. Beams 22, 373379.CrossRefGoogle Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysis. Laser Part. Beams 27, 281290.Google Scholar
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2006). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.Google Scholar
Gamaly, E.G., Rode, A.V., Luther-Davies, B. & Tikhonchuk, V.T. (2002). Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9, 949957.Google Scholar
Gordillo-Vázquez, F.J. (2002). An approach to the ejection mechanisms of Li atoms from pulsed excimer laser ablation of a LiNbO3 target. Laser Part. Beams 20, 227231.CrossRefGoogle Scholar
Harrach, R.J. & Kidder, R.E. (1981). Simple model of energy deposition by suprathermal electrons in laser-irradiated targets. Phys. Rev. A 23, 887.Google Scholar
Hughes, T.P. (1975). Plasma and Laser Light. Bristol, UK: Adam Hilger.Google Scholar
Kanavin, A.P., Smetanin, I.V., Isakov, V.A., Afanasiev, Yu.V., Chichkov, B.N., Wellegehausen, B., Nolte, S., Momma, C. & Tünnermann, A. (1998). Heat transport in metals irradiated by ultrashort laser pulses. Phys. Rev. B 57, 14698.Google Scholar
Kautek, W., Kruger, J., Lenzner, M., Sartania, S., Spielmann, C. & Krausz, F. (1996). Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps. Appl. Phy. Lett. 69, 3146.Google Scholar
Lam, Y.G., Tran, D.V. & Zheng, H.Y. (2007). A study of substrate temperature distribution during ultrashort laser ablation of bulk copper. Laser Part. Beams 25, 155159.Google Scholar
Lee, Y.T. & More, R. (1984). An electron conductivity model for dense plasmas. Phys. Fluids 27, 1273.CrossRefGoogle Scholar
Lenzer, M., Kruger, J., Sartania, S., Cheng, Z., Spielmann, C., Mourou, G., Kautek, W. & Krausz, F. (1998). Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett. 80, 4076.Google Scholar
Milchberg, H.M., Freeman, R.R., Davey, S.C & More, R.M. (1988). Resistivity of a simple metal from room temperature to 106 K. Phy. Rev. Lett. 61, 2364.CrossRefGoogle ScholarPubMed
Miller, J.C. (Ed.) (1994). Laser Ablation: Principles and Applications. Berlin: Springer-Verlag.Google Scholar
Nolte, S., Momma, C., Jacobs, H., Tunnermann, A., Chichkov, B.N., Wellegehausen, B. & Welling, H. (1996). Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 14, 2716.Google Scholar
Preuss, S. & Stuke, M. (1995). Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time resolved characterization of ablation dynamics. Appl. Phys. Lett. 67, 338.Google Scholar
Schade, W., Bohling, C., Hohmann, K. & Scheel, D. (2006). Laser-induced plasma spectroscopy for mine detection and verification. Laser Part. Beams 24, 241247.Google Scholar
Spitzer, L. (1962). The Physics of Fully Ionised Gases. New York: Wiley Interscience.Google Scholar
Tabak, M., Hammer, J., Glinsky, M., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.Google Scholar
Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.CrossRefGoogle Scholar
Tonon, G.F. & Colombant, D. (1973). X-ray emission in laser-produced plasmas. J. Appl. Phys. 44, 35243537.Google Scholar
Trtica, M., Gakovi, C.B., Maravic, D., Batani, D. & Redaelli, R. (2006). Surface Modification of Titanium by High Intensity Ultra-short Nd:YAG Laser. Mater. Sci. Forum 518, 167172.Google Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2006). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O-2/Ar atmosphere. Laser Part. Beams 23, 149153.Google Scholar
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.CrossRefGoogle Scholar
Wang, Y.-L., Xu, W., Zhou, Y., Chu, L.-Z. & Fu, G.-S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.CrossRefGoogle Scholar
Wieger, V., Strassl, M. & Wintner, E. (2006). Pico- and microsecond laser ablation of dental restorative materials. Laser Part. Beams 24, 4145.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.CrossRefGoogle ScholarPubMed