Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T23:20:12.421Z Has data issue: false hasContentIssue false

Simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super-FRS

Published online by Cambridge University Press:  07 July 2008

N.A. Tahir*
Affiliation:
Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
H. Weick
Affiliation:
Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
A. Shutov
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
V. Kim
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A. Matveichev
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A. Ostrik
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
V. Sultanov
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
I.V. Lomonosov
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A.R. Piriz
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
J.J. Lopez Cela
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
D.H.H. Hoffmann
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
*
Address correspondence and reprint requests to: N.A. Tahir, Gesellschaft für Schwerionenforschung Darmstadt, Planckstrasse 1, 64291 Darmstadt, Germany. E-mail: n.tahir@gsi.de

Abstract

Extensive numerical simulations have been carried out to design a viable solid graphite wheel shaped production target for the super conducting fragment separator experiments (Super-FRS) at the future Facility for Antiprotons and Ion Research (FAIR) using an intense uranium beam. In this study, generation, propagation and decay of deviatoric stress waves induced by the beam in the target, have been investigated. Maximum beam intensities that the target can tolerate using different focal spot sizes that are determined by requirements of good isotope resolution and transmission of the secondary beam through the fragment separator, have been calculated. It has been reported elsewhere that the tensile strength of graphite significantly increases with temperature. To take advantage of this effect, calculations have also been done in which the target is preheated to a higher temperature, that in practice can be achieved, for example, by irradiating the target with a defocused ion beam before the experiments are performed. We report results of a few examples using an initial temperature of 2000 K. This study has shown that employing such a configuration, one may use a solid graphite production target even for the maximum intensity of the uranium beam (5 × 1011 ion per bunch) at the Super-FRS.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bushman, A.V., Kanel, G.I., Ni, A.L. & Fortov, V.E. (1993). Thermophysics and dynamics of intense pulsed loadings. London: Taylor and Francis.Google Scholar
Dolinskii, A., Beller, P., Beckert, K., Franzke, B., Nolden, F. & Steck, M. (2004). Optimized lattice for the collector ring (CR). Nucl. Instrum. Methods A 532, 483.CrossRefGoogle Scholar
Fortov, V.E., Goel, B., Munz, C.-D., Ni, A.L., Shutov, A. & Vorobiev, O.Yu. (1996). Numerical simulations of non-stationary fronts and interfaces by the Godunov method in moving grids. Nucl. Sci. Eng. 123, 169.CrossRefGoogle Scholar
Geissel, H., Weick, H., Münzenberg, G., Chichkine, V., Yavor, M., Aumann, T., Behr, K.H., Böhmer, A., Brünle, A., Burkahrd, K., Benlliure, J., Cortina-Gil, D., Chulkov, L., Dael, A., Ducret, J.-E., Emling, H., Franczak, B., Friese, J., Gastineau, B., Gerl, J., Gernhäuser, R., Hellström, M., Johnson, B., Kojouharova, J., Kulessa, R., Kindler, B., Kurz, N., Lommel, B., Mittig, W., Moritz, G., Mühle, , Nolen, J.A., Nyman, G., Rousell-Chomaz, P., Scheindenberger, C., Schmidt, K.-H., Schrieder, G., Sherrill, B.M., Simon, H., Sümmerer, K., Tahir, N.A., Vysotsky, V., Wollnik, H. & Zeller, A.F. (2003). The Super-FRS project at GSI. Nucl. Instrum. Methods Phys. Res. B 204, 71.CrossRefGoogle Scholar
Heidenreich, G. (2002). Carbon and beryllium targets at PSI. AIP Conf. Proc. 642: High Intensity and High Brightness Hadron Beams 642, 124.Google Scholar
Henning, W.F. (2004). The future GSI facility. Nucl. Instrum. Methods Phys. Res. B 214, 155.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives of high energy density physics with intense ions and laser beams. Laser Part. Beams 23, 47.CrossRefGoogle Scholar
Iwasa, N., Geissel, H., Muenzenberg, G., Scheindenberger, C., Schwab, Th. & Wolnik, H. (1997). MOCADI, a universal Monte Carlo code for the transport of heavy ions through matter with ion optical systems. Nucl. Instrum. Methods Phys. Res. B 126, 284.CrossRefGoogle Scholar
Kerley, G.I. (2001). Multi-component multiphase equation-of-state for carbon. Sandia Nat. Lab. Rep. SAND2001–2619.Google Scholar
Lomonosov, I.V. (2007). A multi-phase equation-of-state for aluminum. Laser Part. Beams 25, 567.CrossRefGoogle Scholar
Lomonosov, I.V. & Tahir, N.A. (2008). Theoretical investigation of shock wave instability in metals. Appl. Phys. Lett. 92, 101905.CrossRefGoogle Scholar
Lopez Cela, J.J., Piriz, A.R., Serena Moreno, M. & Tahir, N.A. (2006). Numerical simulations of Rayleigh-Taylor instability in elastic solids. Laser Part. Beams 24, 427.CrossRefGoogle Scholar
Nolden, F., Beckert, F., Caspers, F., Franzke, B., Menges, R., Schwinn, A. & Steck, M. (2000). Stochastic cooling in the ESR. Nucl. Instrum. Methods Phys. Res. A 441, 219.CrossRefGoogle Scholar
Piriz, A.R., Portugues, R.F., Tahir, N.A. & Hofmann, D.H.H. (2002). Implosion of multilayered cylindrical targets driven by intense heavy ion beams. Phys. Rev. E 66, 056403.CrossRefGoogle ScholarPubMed
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003). Generation of a hollow ion beam: Calculation of the rotation frequency required to accomodate symmetry constraint. Phys. Rev. E 67, 017501.CrossRefGoogle Scholar
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2005). Rayleigh-Taylor instability in elastic solids. Phys. Rev. E 72, 056313.CrossRefGoogle ScholarPubMed
Piriz, A.R., Lopez Cela, J.J., Serena Moreno, M., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275.CrossRefGoogle Scholar
Piriz, A.R., Tahir, N.A., Lopez Cela, J.J., Cortazar, O.D., Serna Moreno, M.C., Temporal, M. & Hoffmann, D.H.H. (2007). Analytic models for the design of the LAPLAS target. Contrib. Plasma Phys. 47, 213.CrossRefGoogle Scholar
Piriz, A.R., Lopez Cela, J.J., Serna Moreno, M.C., Cortazar, O.D., Tahir, N.A. & Hoffmann, D.H.H. (2007). A new approach to Rayleigh-Taylor instability: Applications to accelerated elastic solids. Nucl. Instrum. Methods Phys. Res. A 577, 250.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Spiller, P. & Bock, R. (1999). Heavy-ion-induced hydrodynamic effects in solid targets. Phys. Rev. E 60, 4715.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 a). Shock compression of condensed matter using intense beams of energetic heavy ions. Phys. Rev. E 61, 1975.CrossRefGoogle ScholarPubMed
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 b). Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot. Phys. Rev. E 62, 1224.CrossRefGoogle ScholarPubMed
Tahir, N.A., Kozyreva, , Spiller, P., Hoffmann, D.H.H. & Shutov, A. (2001 a). Necessity of bunch compression for heavy-ion-induced hydrodynamics and studies of beam fragmentation in solid targets at a proposed synchrotron facility. Phys. Rev. E 63, 036407.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Nuener, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001 b). Metallization of hydrogen using heavy-ion-beam implosion of multi-layered targets. Phys. Rev. E 63, 016402.CrossRefGoogle Scholar
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R., Temporal, M., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V.E. (2003 a). Influence of the equation of state on the compression and heating of hydrogen. Phys. Rev. B 67, 184101.CrossRefGoogle Scholar
Tahir, N.A., Winkler, M., Kojouharova, J., Rousell-Chomaz, P., Chichkine, V., Geissel, H., Hoffmann, D.H.H., Kindler, B., Landre-Pellemoine, F., Lommel, B., Mittig, W., Münzenberg, G., Shutov, A., Weick, H. & Yavor, M. (2003 b). High-power production targets for the Super-FRS using a fast extraction scheme. Nucl. Instrum. Methods Phys. Res. B 204, 282.CrossRefGoogle Scholar
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 a). Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Methods Phys. Res. A 544, 16.CrossRefGoogle Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 b). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Tahir, N.A., Weick, H., Iwase, H., Geissel, H., Hoffmann, D.H.H., Kindler, B., Lommel, B., Radon, T., Münzenberg, G. & Sümmerer, K. (2005 c). Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR facility. J. Phys. D: Appl. Phys. 38, 1828.CrossRefGoogle Scholar
Tahir, N.A., Goddard, B., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 d). Impact of 7-Tev/c large Hadron collider proton beam on a copper target. J. Appl. Phys. 97, 083532.CrossRefGoogle Scholar
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 e). The CERN large Hadron collider as a tool to study high-energy-density physics. Phys. Rev. Lett. 94, 135004.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Udrea, S., Cortazar, O.D., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Lomonosov, I.V., Ni, P., Piriz, A.R., Shutov, A., Temporal, M. & Varentsov, D. (2006). Studies of equation-of-state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB collaboration. Nucl. Instrum. Methods Phys. Res. B 245, 85.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 a). HEDgeHOB: High-energy-density matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instrum. Methods Phys. Res. A 577, 238.CrossRefGoogle Scholar
Tahir, N.A., Piriz, A.R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Wouchuk, G., Deutsch, C., Spiller, P., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 b). Survey of theoretical work for the proposed HEDgeHOB collaboration: HIHEX and LAPLAS. Contrib. Plasma Phys. 47, 223.CrossRefGoogle Scholar
Tahir, N.A., Schmict, R., Brugger, M., Lomonosov, I.V., Shutov, A., Piriz, A.R., Udrea, S., Hoffmann, D.H.H. & Deutsch, C. (2007 c). Prospects of high energy density research using the CERN Super Proton Synchrotron. Laser Part. Beams. 25, 639.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Matveichev, A., Ostrik, A., Lomonosov, I.V., Piriz, A.R., Weick, , Lopez Cela, J.J. & Hoffmann, D.H.H. (2007 d). Numerical modeling of heavy ion induced thermal stress waves in solid targets. Laser Part. Beams 25, 523.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Grigoriev, D.A., Piriz, A.R., Weick, H., Geissel, H. & Hoffmann, D.H.H. (2007 e). High energy density physics problems related to liquid jet lithium target for Super-FRS fast extraction scheme. Laser Part. Beams 25, 295.CrossRefGoogle Scholar
Tahir, N.A., Kim, V.V., Matveichev, A.V., Ostrik, A.V., Shutov, A.V., Lomonosov, I.V., Piriz, A.R., Lopez Cela, J.J. & Hoffmann, D.H.H. (2008). High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets. Laser Part. Beams. 26, 273.CrossRefGoogle Scholar
Temporal, M.J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2003). Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 609.CrossRefGoogle Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams. 23, 137.CrossRefGoogle Scholar