Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T11:38:11.498Z Has data issue: false hasContentIssue false

Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse

Published online by Cambridge University Press:  08 January 2009

W. Hong*
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
Y. He
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
T. Wen
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
H. Du
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
J. Teng
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
X. Qing
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China Physics Department, National University of Defense Technology, Changsha, China
Z. Huang
Affiliation:
Department of Engineering Physics, Tsinghua University, Haidian District, Beijing, China
W. Huang
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
H. Liu
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
X. Wang
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
X. Huang
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
Q. Zhu
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
Y. Ding
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
H. Peng
Affiliation:
National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, China
*
Address correspondence and reprint requests to: Wei Hong, National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box, 919-986, Mianyang, Sichuan Province, China, 621900. E-mail: jminhong@126.com

Abstract

We present the temporal and spatial characterization of X-ray sources (at ~1 keV) driven by a 200 TW, 30 fs, 800 nm laser pulse on SILEX-I laser facility at Research Center of Laser Fusion. For laser copper foil interaction with laser intensity between 6 × 1018 W/cm2 and 3 × 1019 W/cm2, the X-ray images show cone-like jet structures. While the yield of X-rays is strongly dependent on the laser intensity, the plasma expansion length is weakly dependent on the laser intensity, and the open angle of the cone-like jet is not correlated to the laser intensity. The formation of the jet structure is attributed to the plasma transverse confine by the self-induced quasi-static magnetic field. An X-ray pedestal 4 ns preceding the main pulse was observed. The correlation between X-ray pedestal and collimated proton beam generation was found.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basov, N.G., Zakharenkov, Y.A., Rupasov, A.A., Sklizkov, G.V. & Shikanov, A.S. (1989). Dense Plasma Diagnostics. Moscow: Nauka.Google Scholar
Burgess, M.D.J., Luther-Davis, B. & Nugent, K.A. (1985). An experimental study of magnetic fields in plasmas created by high intensity one micro laser radiation. Phys. Fluids. 28, 22862297.CrossRefGoogle Scholar
Cao, L.F., Uschmann, I., Zamponi, F., Kampfer, T., Fuhrmann, A., Forster, E., Holl, A., Redmer, R., Toleikis, S., Tschentscher, T. & Glenzer, S.H. (2007). Space-time characterization of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239244.CrossRefGoogle Scholar
Cobble, J.A., Schappert, G.T., Jones, L.A., Taylor, A.J., Kyrala, G.A. & Fulton, R.D. (1991). The interaction of a high irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on X-ray production. J. Appl. Phys. 69, 33693371.CrossRefGoogle Scholar
Dusterer, S., Schwoerer, H., Ziegler, W., Ziener, C. & Sauerbrey, R. (2001). Optimization of EUV radiation yield from laser-produced plasma. Appl. Phys. B 73, 693698.Google Scholar
Faenov, A.Y. & Pikuz, T.A. (2003). Atoms and Plasmas in Super-Intense Laser Fields. Sicily: Erice.Google Scholar
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Gibbon, P. (2005 a). Short Pulse Laser Interactions with Matter: An Introduction. London: Imperial College Press.CrossRefGoogle Scholar
Gibbon, P. (2005 b). Short Pulse Laser Interactions with Matter: An Introduction. London: Imperial College Press.CrossRefGoogle Scholar
Hertz, H.M., Johansson, G.A., Stollberg, H., De Groot, J., Hemberg, O., Holmberg, A., Rehbein, S., Jansson, P., Eriksson, F. & Birch, J. (2003). Table-top X-ray microscopy: Sources, optics and applications. J. Phys. IV 104, 115119.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Jiang, Z., Kieffer, J.C., Matte, J.P., Chaker, M., Peyrusse, O., Giiles, D., Korn, G., Maksimchuk, A., Coe, S. & Mourou, G. (1995). X-ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 1018–1019 W/cm2. Phys. Plasmas 2, 17021711.CrossRefGoogle Scholar
Kaluza, M., Schreiber, J., Santala, M.I., Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K.J. (2004). Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003.CrossRefGoogle ScholarPubMed
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Kieffer, J.C., Krol, A., Jiang, Z., Chamberlain, C.C., Scalzetti, E. & Ichalalene, Z. (2002). Future of laser-based X-ray sources for medical imaging. Appl. Phys. B. 74, S75S81.CrossRefGoogle Scholar
Kruer, W.L. (2003). The Physics of Laser Plasma Interactions. Boulder, Co: Westview Press.Google Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.CrossRefGoogle Scholar
Kulcsár, G., Budnik, F.W., Herman, P.R., Moskovits, M., Zhao, L. & Marjoribanks, R.S. (2000). Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets. Phys. Rev. Lett. 84, 5149.CrossRefGoogle ScholarPubMed
Laska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krasa, J., Krousky, E., Kubes, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosinski, M., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Wolowsk, J. (2007). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.CrossRefGoogle Scholar
Li, Y.T., Zhang, J.I., Chen, L.M., Xia, J.F., Teng, H., Wei, Z.Y. & Jiang, W.M. (2000). Observation of the transverse pinch of the expansion of an femtosecond laser plasma. Acta Phys. Sini. 49, 14001403.Google Scholar
Malik, H.K., Kumar, S. & Singh, K.P. (2008). Electron acceleration in a rectangular waveguide filled with unmagnetized inhomogeneous cold. Laser Part. Beams 26, 197205.CrossRefGoogle Scholar
Murnane, M.M., Kapteyn, H.C. & Falcone, R.W. (1989). High density plasmas produced by ultrafast laser pulses. Phys. Rev. Lett. 62, 155158.CrossRefGoogle ScholarPubMed
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Peng, H.S. (2006). SILEX-I:300-TW Ti:sapphire laser. Laser Phys. 16, 244247.CrossRefGoogle Scholar
Rousse, A., Rischel, C. & Gauthier, J.C. (2001 b). Colloquium: Femtosecond X-ray crystallography. Rev. Mod. Phys. 73, 1731.CrossRefGoogle Scholar
Rousse, A., Rischel, C., Fourmaux, S., Uschmann, I., Sebban, S., Grillon, G., Balcou, P., Forster, E., Geindre, J.P., Audebert, P., Gauthier, J.C. & Hulin, D. (2001 a). Non-thermal melting in semiconductors measured at femtosecond resolution. Nat. 410, 6568.CrossRefGoogle ScholarPubMed
Rymell, L., Berglund, M. & Hertz, H.M. (1995). Debris-free single-line laser plasma X-ray source for microscopy. Appl. Phys. Lett. 66, 26252627.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Schwarz, H. & Hora, H. (1969). Laser Interaction and Related Plasma Phenomena, Vol. 1 (Schwarz, H. & Hora, H., eds.). New York: Plenum Press.Google Scholar
Singh, K.P. & Malik, H.K. (2008). Resonant enhancement of electron energy by frequency chirp during, laser acceleration in an azimuthal magnetic field in a plasma. Laser Part. Beams 26, 363369.CrossRefGoogle Scholar
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennigton, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945.CrossRefGoogle ScholarPubMed
Stamper, J.A., Mclean, E.A. & Ripin, B.H. (1978). Studies of spontaneous magnetic fields in laser-produced plasma by Faraday rotation. Phys. Rev. Lett. 40, 11771181.CrossRefGoogle Scholar
Svanberg, S. (2001). Some applications of ultrashort laser pulses in biology and medicine. Meas. Sci. Tech. 12, 17771783.CrossRefGoogle Scholar
Teubner, U., Missalla, T. & Uschmann, I. (1996). X-ray spectra from highly ionized dense plasma produced by ultrashort laser pulses. Appl. Phys. B. 62, 213220.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Gammino, S. & Ando, L. (2007). Ion energy increase in laser-generated plasma expanding through axial magnetic field trap. Laser Part. Beams 25, 453464.CrossRefGoogle Scholar
Turcu, I.C.E. & Dance, J.B. (1998). X-rays From Laser Plasmas: Generation and Applications. New York: John Wiley & Sons.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Zhidkov, A., Sasaki, A., Utsumi, T., Fukumoto, I.I., Tajima, T., Saito, F., Hironaka, Y., Nakamura, K.G., Kondo, K. & Yoshida, M. (2000). Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids. Phys. Rev. E 62, 7232–40.CrossRefGoogle ScholarPubMed
Zhong, F., Deng, J., Zhang, Z., Qing, L.I. & Xu, Z. (1999). Characteristic of plasma X-ray emissions generated by femtosecond and nanosecond laser pulses. Acta Opt. Sini. 19, 364368.Google Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar