Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T03:03:15.914Z Has data issue: false hasContentIssue false

Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd:YAG laser

Published online by Cambridge University Press:  19 March 2008

S. Hafeez
Affiliation:
Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan
M. A. Baig
Affiliation:
Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan

Abstract

The ablation of calcium sample has been studied by the optical emission spectroscopy of the evolving plasma using the fundamental, second, and third harmonic of a Nd:YAG laser, which reveals numerous transitions due to neutral and singly ionized calcium. The measurements have been performed to determine the electron temperature and electron number density and their spatial behavior. In addition, the behavior of the electron temperature and number density as a function of laser irradiance and ambient gas pressure has been studied. The processes of laser photon absorption in the plasma through inverse bremsstrahlung and photoionization have also been discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdellatif, G. & Imam, H. (2002). A study of the laser plasma parameters at different laser wavelengths. Spectrochim. Acta B 57, 11551165.CrossRefGoogle Scholar
Amoruso, S., Bruzzese, R., Spinelli, N. & Velotta, R. (1999). Characterization of laser-ablation plasmas. J. Phys. B: At. Mol. Opt. Phys. 32, R131R172.CrossRefGoogle Scholar
Asimellis, G., Giannoudakos, A. & Kompitsas, M. (2006). Near-IR bromine laser conduced breakdown spectroscopy detection and ambient gas effects on emission line asymmetric Stark broadening and shift. Spectrochim. Acta B 61, 12701278.CrossRefGoogle Scholar
Barklem, P.S. & O' Mara Mon, B. (1998). The broadening of strong lines of Ca+, Mg+ and Ba+ by collisions with neutral hydrogen atoms. J. Not. Astron. Soc. 300, 863871.CrossRefGoogle Scholar
Bashir, S., Rafique, M.S. & Ul-Haq, F. (2007). Laser ablation of ion irradiated CR-39. Laser Part. Beams 25, 181191.CrossRefGoogle Scholar
Body, D. & Chadwick, B.L. (2001). Simultaneous elemental analysis system using laser induced breakdown spectroscopy Rev. Sci. Instru. 72, 16251629.CrossRefGoogle Scholar
Bogaerts, A., Chen, Z., Gjbels, R. & Vertes, A. (2003). Laser ablation for analytical sampling: What can we learn from modeling? Spectrochim. Acta B 58, 18671893.CrossRefGoogle Scholar
Bogaerts, A., Chen, Z. & Bleiner, D. (2006). Laser ablation of copper in different background gases: Comparative study by numerical modeling and experiments. J. Analytical Atomic Spectrometry 21, 384395.CrossRefGoogle Scholar
Bustamante, M.F., Rinaldi, C.A. & Ferrero, J.C. (2002). Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile. Spectrochim. Acta B 57, 303309.CrossRefGoogle Scholar
Bussoli, M., Batani, D., Desai, T., Canova, F., Milani, M., Trtica, M., Gakovic, B. & Krousky, E. (2007). Study of laser induced ablation with focused ion beam/scanning electron microscope devices. Laser Part. Beams 25, 121125.CrossRefGoogle Scholar
Bulgakov, A.V. & Bulgakova, N.M. (1998). Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and ambient gas: Analogy with an under expanded jet. J. Phys. D: Appl. Phys 31, 693703.CrossRefGoogle Scholar
Capitelli, M., Casavola, A., Colonna, G. & De Giacomo, A. (2004). Laser-induced plasma expansion theoretical and experimental aspects. Spectrochim. Acta B 59, 271289.CrossRefGoogle Scholar
Chang, J.J. & Warner, B.E. (1996). Laser-plasma interaction during visible-laser ablation methods. Appl. Phys. Lett. 69, 473475.CrossRefGoogle Scholar
Chen, Z. & Bogaerts, A. (2005). Laser ablation of Cu and plume expansion into 1 atm ambient gas. J. Appl. Phys. 97, 063305–1–12.CrossRefGoogle Scholar
Cowan, R.D. (1981). Detector was approximately placed at the distance of 0.5 mm from the target. The Theory of Atomic Structure and Spectra University of California press.CrossRefGoogle Scholar
Colon, C., Hatem, G., Verdugo, E., Ruiz, P. & Campos, J. (1993). Measurement of the Stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum. J. Appl. Phys. 73, 47524758.CrossRefGoogle Scholar
Colonna, G., Casavola, A. & Capitelli, M. (2001). Modeling of LIBS plasma expansion. Spectrochim. Acta B 56, 567.CrossRefGoogle Scholar
Cristoforetti, G., Legnaioli, S., Palleschi, V., Salvetti, A. & Tognoni, E. (2004). Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration. Spectrochimica Acta B 59, 19071917.CrossRefGoogle Scholar
Cremers, D.A. & Radziemski, L.J. (2006). Handbook of Laser-Induced Breakdown Spectroscopy. New York: John Wiley & Sons, Ltd.CrossRefGoogle Scholar
De Giacomo, A. (2003). Experimental characterization of metallic titanium-laser induced plasma by time and space resolved optical emission spectroscopy. Spectrochim. Acta B 58, 7183.CrossRefGoogle Scholar
D'Couto, G.C. & Babu, S.V. (1994). Heat transfer and material removal in pulsed excimer-laser-induced ablation: Pulse width dependence. J. Appl. Phys. 76, 30523058.CrossRefGoogle Scholar
Gomes, A., Aubreton, A., Gonzalez, J.J & Vaquie, S. (2004). Experimental and theoretical study of the expansion of metallic vapor plasma produced by laser. J. Phys. D. Appl. Phys. 37, 689696.CrossRefGoogle Scholar
Gornushkin, I.B., King, L.A, Smith, B.W, Omenetto, N. & Winefordner, J.D. (1999). Line broadening mechanisms in the low pressure laser-induced plasma. Spectrochim. Acta B 54, 12071271.CrossRefGoogle Scholar
Griem, H.R. (1997). Principles of Plasma Spectroscopy Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hafez, M.A., Khedr, M.A.Elaksher, F.F. & Gamal, Y.E. (2003). Characterization of Cu plasma produced by a laser interaction with a solid target. Plasma Sources Sci. Technol. 12, 185198.CrossRefGoogle Scholar
Harilal, S.S., Bindhu, C.V., Issac, Riju C., Nampoori, V.P.N. & Vallabhan, C.P.G. (1997). Electron density and temperature measurements in a laser produced carbon plasma. J. Appl. Phys. 82, 21402146.CrossRefGoogle Scholar
Lam, Y.C., Tran, D.V. & Zheng, H.Y. (2007). A study of substrate temperature distribution during ultrashort laser ablation of bulk copper. Laser Part. Beams 25, 155159.CrossRefGoogle Scholar
Laville, S., Vidal, F., Johnston, T.W., Chaker, M. & Le Drogoff, B. (2004). Modeling the time evolution of laser-induced plasmas for various pulse durations and fluences. Phys. Plasmas 11, 21822190.CrossRefGoogle Scholar
Marr, G.V. (1968). Plasma Spectroscopy Amstrerdam: Elsevier.Google Scholar
Maravelaki-Kalaitzaki, P., Anglos, D., Kilikolou, V. & Zafiropulos, V. (2001). Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy. Spectrochim. Acta B 56, 887903.CrossRefGoogle Scholar
Martin, P., Trainham, R., Agostini, P. & Petite, G. (1992). Electron and ion emission in high-intensity laser irradiation of aluminum. Phys. Rev. B 45, 6977.CrossRefGoogle ScholarPubMed
Miziolek, A.W., Palleschi, V. & Schechter, I. (2006). Laser Induced Breakdown Spectroscopy Fundamentals and Applications Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ozaki, T., Bom, L.B.E., Ganeev, R., Kieffer, J.C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Ortiz, M. & Mayo, R. (2005). Measurement of the Stark broadening for several lines of singly ionized gold. J. Appl. Phys. B At. Mol. Opt. Phys. 38, 39533961.CrossRefGoogle Scholar
Russo, R.E., Mao, X.L., Liu, H.C., Yoo, J.H. & Mao, S.S. (1999). Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation. Appl. Phys. A 69, S887S894.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Schade, W., Bohling, C., Hohmann, K. & Scheel, D. (2006). Laser-induced plasma spectroscopy for mine detection and verification. Laser and Particle Beams 24, 241247.CrossRefGoogle Scholar
Shaikh, N.M., Rashid, B., Hafeez, S., Jamil, Y. & Baig, M. A. (2006 a). Measurement of electron density and temperature of a laser-induced zinc plasma. J. Phys. D: Appl. Phys 39, 1384.CrossRefGoogle Scholar
Shaikh, N.M., Hafeez, S., Rashid, B., Mahmood, S. & Baig, M.A. (2006 b). Optical emission studies of the mercury plasma generated by the fundamental, second and third harmonics of a Nd:YAG laser. J. Phys. D: Appl. Phys 39, 43774385.CrossRefGoogle Scholar
Shaikh, N.M., Rashid, B., Hafeez, S., Mahmood, S., Saleem, M. & Baig, M.A. (2006 c). Diagnostics of cadmium plasma produced by laser ablation. J. Appl. Phys. 100, 073102.CrossRefGoogle Scholar
Shaikh, N.M, Hafeez, S., Rashid, B. & Baig, M.A. (2007). Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser. Eur. Phys. J. D: 44, 371379.CrossRefGoogle Scholar
Singh, R. K., Holland, O.W. & Narayan, J. (1990). Theoretical model for deposition of superconducting thin films using laser evaporation technique. J. Appl. Phys. 68, 233247.CrossRefGoogle Scholar
Lee, Y., Thiem, T.L., Kim, Gi-Ho T.L., Ye-Yung, T. & Sneddon, J. (1992). Interaction of an excimer-laser beam with metals. Part III: The effect of a controlled atmosphere in laser-ablated plasma emission. Appl. Spectroscopy 46, 15971604.CrossRefGoogle Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O2/Ar atmosphere. Laser Part. Beams 23, 149153.CrossRefGoogle Scholar
Thareja, R.K. & Sharma, D.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.CrossRefGoogle Scholar
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.CrossRefGoogle Scholar
Vidal, F., Laville, S., Johnston, T.W., Barthelemy, O., Chaker, M., Le Drogoff, B., Margot, J. & Sabsabi, M. (2001). Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air. Spectrochim. Acta B 56, 973986.CrossRefGoogle Scholar
Wang, Y.-L., Xu, W., Zhou, Y., Chu, L.-Z. & Fu, G.-S. (2007). Influence of pulse repetition rate on the average size of silicon nano-particles deposited by laser ablation. Laser Part. Beams 25, 913.CrossRefGoogle Scholar
Wieger, V., Strassl, M. & Wintner, E. (2006). Pico- and micro-second laser ablation of dental restorative materials. Laser Part. Beams 24, 4145.CrossRefGoogle Scholar
Whirter, M.RW.P (1965). Plasma Diagnostic Techniques, Huddlestone, R H & Leonard, S.L., New York: Academic Press.Google Scholar
Ying, M., Xia, Y., Sun, Y., Zhao, M., Ma, Y., Liu, X., Li, Y. & Hou, X. (2003). Plasma properties of a laser-ablated aluminum target in air. Laser Part. Beam 21, 97101.CrossRefGoogle Scholar
Zbroniec, L., Sasaki, T. & Koshizaki, N. (2004). Effect of ambient gas laser fluence on the compositional changes in iron oxide particles aggregated films prepared by laser ablation. Appl. Phys. A 79, 1783.CrossRefGoogle Scholar
Zeng, X., Mao, S.S., Liu, C., Mao, X., Greif, R. & Russo, R.E. (2003). Plasma diagnostics during laser ablation in a cavity. Spectrochim. Acta B 58, 867877.CrossRefGoogle Scholar