Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T13:09:42.664Z Has data issue: false hasContentIssue false

Spin effects in nonlinear Compton scattering in ultrashort linearly-polarized laser pulses

Published online by Cambridge University Press:  11 July 2013

K. Krajewska
Affiliation:
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
J. Z. Kamiński*
Affiliation:
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
*
Address correspondence and reprint requests to: K. Krajewska, Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, 00-681 Warsaw, Poland. E-mail: katarzyna.krajewska@fuw.edu.pl

Abstract

The nonlinear Compton scattering by a linearly polarized laser pulse of finite duration is analyzed, with a focus on the spin effects of target electrons. We show that, although the Compton scattering accompanied by the electron no-spin flip is dominant, for some energy regions of Compton photons their emission is dominated by the process leading to the electron spin flip. This feature is observed for different pulse durations, and can be treated as a signature of quantum behavior. Similar conclusions are reached when analyzing the scattered electron energy spectra. This time, the sensitivity of spin effects to the carrier-envelope phase of the driving pulse is demonstrated. The possibility of electron acceleration by means of Compton scattering is also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boca, M., Dinu, V. & Florescu, V. (2012 a). Electron distributions in nonlinear Compton scattering. Phys. Rev. A 86, 013414.CrossRefGoogle Scholar
Boca, M., Dinu, V. & Florescu, V. (2012 b). Spin effects in nonlinear Compton scattering in a plane-wave laser pulse. Nucl. Instrum. Meth. Phys. Res. Sect. B 279, 1215.CrossRefGoogle Scholar
Boca, M. & Florescu, V. (2009). Nonlinear Compton scattering with a laser pulse. Phys. Rev. A 80, 053403.CrossRefGoogle Scholar
Boca, M. & Florescu, V. (2011). Thomson and Compton scattering with an intense laser pulse. Eur. Phys. J. D 61, 449462.CrossRefGoogle Scholar
Bolshedvorsky, E.M. & Polityko, S.I. (2000). Polarization of the final electron in the field of an intense electromagnetic wave. Russ. Phys. J. 43, 913920.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T.Zh., Hayashi, Y., Kando, M., Kiriyama, H., Koga, J.K., Kondo, K., Kotaki, H., Pirozhkov, A.S., Bulanov, S.S., Zhidkov, A.G., Chen, P., Neely, D., Kato, Y., Narozhny, N.B. & Korn, G. (2011). On the design of experiments for the study of extreme field limits in the interaction of laser with ultrarelativistic electron beam. Nucl. Instrum. Methods Phys. Res. A 600, 3142.CrossRefGoogle Scholar
Di Piazza, A., Müller, C., Hatsagortsyan, K.Z. & Keitel, C.H. (2012). Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 11771228.CrossRefGoogle Scholar
Ehlotzky, F., Krajewska, K. & Kamiński, J.Z. (2009). Fundamental processes of quantum electrodynamics. Rep. Prog. Phys. 72, 046401.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Galkin, A.L., Korobkin, V.V., Romanovskiy, M.Yu., Trofimov, V.A. & Shiryaev, O.B. (2012). Accelaration of electrons to high energies in a standing wave generated by counterpropagating intense laser pulses with tilted amplitude fronts. Phys. Plasmas 7, 073102.Google Scholar
Heinzl, T., Seipt, D. & Kämpfer, B. (2010). Beam-shape effects in nonlinear Compton and Thomson scattering. Phys. Rev. A 81, 022125.CrossRefGoogle Scholar
Ivanov, D.Yu., Kotkin, G.L. & Serbo, V.G. (2004). Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave. Eur. Phys. J. C 36, 127145.CrossRefGoogle Scholar
Korobkin, V.V., Romanovskiy, M.Yu., Trofimov, V.A. & Shiryaev, O.B. (2013). Concept of generation of extremely compressed high-energy electron bunches in several interfering intense laser pulses with tilted amplitude fronts. Laser Part. Beams 31, 2328.CrossRefGoogle Scholar
Krajewska, K. & Kamiński, J.Z. (2010). Recoil effects in multiphoton electron-positron pair creation. Phys. Rev. A 82, 013420.CrossRefGoogle Scholar
Krajewska, K. & Kamiński, J.Z. (2012 a). Compton process in intense short laser pulses. Phys. Rev. A 85 062102.CrossRefGoogle Scholar
Krajewska, K. & Kamiński, J.Z. (2012 b). Breit-Wheeler process in intense short laser pulses. Phys. Rev. A 86, 052104.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.CrossRefGoogle Scholar
Lau, L.L., He, F., Umstadter, D.P. & Kowalczyk, R. (2003). Nonlinear Thomson scattering: A tutorial. Phys. Plasmas 10, 21552162.CrossRefGoogle Scholar
Mackenroth, F. & Di Piazza, A. (2011). Nonlinear Compton scattering in ultrashort laser pulses. Phys. Rev. A 83, 032106.CrossRefGoogle Scholar
Mackenroth, F., Di Piazza, A. & Keitel, C.H. (2010). Determining the carrier-envelope phase of intense few-cycle laser pulses. Phys. Rev. Lett. 105, 063903.CrossRefGoogle ScholarPubMed
Malka, V. (2012). Laser plasma accelerators. Phys. Plasmas 19, 055501.CrossRefGoogle Scholar
Narozhny, N.B. & Fofanov, M.S. (1996). Photon emission by an electron in a collision with a short focused laser pulse. Sov. Phys. JETP 83, 1423.Google Scholar
Neville, R.A. & Rohrlich, F. (1971). Quantum electrodynamics on null planes and applications to lasers. Phys. Rev. D 3, 16921707.CrossRefGoogle Scholar
Panek, P., Kamiński, J.Z. & Ehlotzky, F. (2002). Laser-induced Compton scattering at relativistically high radiation powers. Phys. Rev. A 65, 022712.CrossRefGoogle Scholar
Popa, A. (2011). Periodicity property of relativistic Thomson scattering with application to exact calculations of angular and spectral distributions of the scattered field. Phys. Rev. A 84, 023824.CrossRefGoogle Scholar
Popa, A. (2012). Polarization effects in collisions between very intense laser beams and relativistic electrons. Laser Part. Beams 30, 591603.CrossRefGoogle Scholar
Rashchupkin, S.P., Lebed', A.A. & Padusenko, E.A. (2012). Nonresonant quantum electrodynamics processes in a pulsed laser field. Laser Phys. 22, 15131546.CrossRefGoogle Scholar
Seipt, D. & Kämpfer, B. (2011). Nonlinear Compton scattering of ultrashort intense laser pulses. Phys. Rev. A 83, 022101.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Umstadter, D.P. (2003). Relativistic laser-plasma interactions. J. Phys. D: Appl. Phys. 36, R151R165.CrossRefGoogle Scholar
Volkov, D.M. (1935). Über eine Klasse von Lösungen der Diracschen Gleichung. Z. Phys. 94, 250260.Google Scholar