Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T02:30:28.102Z Has data issue: false hasContentIssue false

Target current: a useful parameter for characterizing laser ablation

Published online by Cambridge University Press:  13 February 2017

J. Krása*
Affiliation:
Institute of Physics, CAS, Prague, Czech Republic
E. Giuffreda
Affiliation:
Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Lecce, Italy INFN, Sezione di Lecce, Italy
D. Delle Side
Affiliation:
Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Lecce, Italy INFN, Sezione di Lecce, Italy
V. Nassisi
Affiliation:
Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Lecce, Italy INFN, Sezione di Lecce, Italy
D. Klír
Affiliation:
Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic Institute of Plasma Physics, CAS, Prague, Czech Republic
J. Cikhardt
Affiliation:
Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic Institute of Plasma Physics, CAS, Prague, Czech Republic
K. Řezáč
Affiliation:
Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic Institute of Plasma Physics, CAS, Prague, Czech Republic
*
*Address correspondence and reprint requests to: J. Krása, Institute of Physics, CAS, Prague, Czech Republic. E-mail: krasa@fzu.cz

Abstract

A current flowing between the ground and target exposed to the nanosecond laser radiation is analyzed to complete characteristics of laser ablation. Three phases of the target current are distinguished. During the ignition phase, the electron emission is driven by the laser pulse and the positive charge generated on the target is balanced by electrons coming from the ground through the target holder. At post-pulse times, a peaked waveform of the target current is typical for the active phase of the plasma and can give information on the material composition of the ablated surface layers. The afterglow phase is determined by a current of electrons flowing from the target to the ground. Experiment shows that the time-resolved target current is very sensitive to the actual composition of the surface layer of irradiated target and laser parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benjamin, R.F., McCall, G.H. & Ehler, A.W. (1979). Measurement of return current in a laser-produced plasma. Phys. Rev. Lett. 42, 890893.Google Scholar
Bogaerts, A., Chen, Z., Gijbels, R. & Vertes, A. (2003). Laser ablation for analytical sampling: what can we learn from modelling? Spectrochim. Acta B 58, 18671893.Google Scholar
Cikhardt, J., Krása, J., De Marco, M., Pfeifer, M., Velyhan, A., Krouský, E., Cikhardtová, B., Klír, D., Řezáč, K., Ullschmied, J., Skála, J., Kubeš, P. & Kravárik, J. (2014). Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Rev. Sci. Instrum. 85, 103507.Google Scholar
De Marco, M., Krása, J., Cikhardt, J., Pfeifer, M., Krouský, E., Margarone, D., Ahmed, H., Borghesi, M., Kar, S., Giuffrida, L., Vrana, R., Velyhan, A., Limpouch, J., Korn, G., Weber, S., Velardi, L., Delle Side, D., Nassisi, V. & Ullschmied, J. (2016). Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets. JINST 11, C06004.CrossRefGoogle Scholar
Dubois, J.-L., Lubrano-Lavaderci, F., Raffestin, D., Ribolzi, J., Gazave, J., Compant La Fontaine, A., d'Humières, E., Hulin, S., Nicolaï, Ph., Poyé, A. & Tikhonchuk, V.T. (2014). Target charging in short-pulse-laser–plasma experiments. Phys. Rev. E 89, 013102.Google Scholar
Giuffreda, E., Delle Side, D., Krasa, J. & Nassisi, V. (2016). Polarization of plastic targets by laser ablation. JINST 11, C05004.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density: Applications and Implications of Laser-Plasma Interaction, Lecture Notes in Physics, New Series m: Monographs, ISBN 0-387-54312-0, New York Berlin Heidelberg: Springer-Verlag.Google Scholar
Krása, J., Delle Side, D., Giuffreda, E. & Nassisi, V. (2015). Characteristics of target polarization by laser ablation. Laser Part. Beams 33, 601605.Google Scholar
Krása, J., Láska, L., Rohlena, K., Velyhan, A., Lorusso, A., Nassisi, V., Czarnecka, A., Parys, P., Ryć, L. & Wolowski, J. (2008). Effects of 2 mass % Si admixture in a laser-produced Fe plasma. Appl. Phys. Lett. 93, 191503.CrossRefGoogle Scholar
Krása, J., Lorusso, A., Nassisi, V., Velardi, L. & Velyhan, A. (2011). Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation. Laser Part. Beams 29, 113119.Google Scholar
Krása, J., Parys, P., Velardy, L., Velyhan, A., Delle Side, D. & Nassisi, V. (2014). Time-of-flight spectra for mapping of charge density of ions produced by laser. Laser Part. Beams 32, 1520.CrossRefGoogle Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Poyè, A., Dubois, J.-L., Lubrano-Lavaderci, F., D'Humiàres, E., Bardon, M., Hulin, S., Bailly-Grandvaux, M., Ribolzi, J., Raffestin, D., Santos, J.J., Nicolaï, Ph. & Tikhonchuk, V. (2015). Dynamic model of target charging by short laser pulse interactions. Phys. Rev. E 92, 043107.CrossRefGoogle ScholarPubMed
Pozebon, D., Scheffler, G.L., Dressler, V.L. & Nunes, M.A.G. (2014). Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples. J. Anal. At. Spectrom. 29, 22042228.CrossRefGoogle Scholar
Russo, R.E., Mao, X., Gonzalez, J.J., Zorba, V. & Yoo, J. (2013). Laser ablation in analytical chemistry. Anal. Chem. 85, 61626177.Google Scholar
Weaver, I., Martin, G.W., Graham, W.G., Morrow, T. & Lewis, C.L.S. (1999). The Langmuir probe as a diagnostic of the electron component within low temperature laser ablated plasma plumes. Rev. Sci. Instrum. 70, 18011805.Google Scholar