Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T12:10:32.383Z Has data issue: false hasContentIssue false

Temporal and spatial expansion of a multi-dimensional model for electron acceleration in the bubble regime

Published online by Cambridge University Press:  25 March 2014

J. Thomas*
Affiliation:
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
A. Pukhov
Affiliation:
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
I.Yu. Kostyukov
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
*
Address correspondence and reprint requests to: J. Thomas, Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf D-40225, Germany. E-mail: thomas@tpl.uni-duesseldorf.de

Abstract

An extended analytical model for particle dynamics in fields of a highly-nonlinear plasma wakefield (the bubble or blow out regime) is derived. A recently proposed piecewise model is generalized to include a time dependent bubble radius and full field solution in the acceleration direction. Incorporation of the cavity dynamics in the model is required to simulate the particle trapping properly. On the other hand, it is shown that the previously reported piecewise model does not reproduce the formation of a mono energetic peak in the particle spectrum. The mono energetic electron beams are recovered only when the full longitudinal field gradient is included in the model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bulanov, S.V., Pegoraro, F., Pukhov, A.M. & Sakharov, A.S. (1997). Transverse-wake wave breaking. Phys. Rev. Lett. 78, 42054208.CrossRefGoogle Scholar
Corde, S., Stordeur, A. & Malka, V. (2011). Comment on scalings for radiation from plasma bubbles. Phys plasmas 18, 034701.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.Google Scholar
Hidding, B., Amthor, K.-U., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J.G., Jamison, S.P., Jaroszynski, D., Pretzler, G. & Sauerbrey, R. (2006). Generation of quasi-monoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96, 105004.Google Scholar
Kalmykov, S., Yi, S.A., Khudik, V. & Shvets, G. (2009). Electron self-injection and trapping into an evolving plasma bubble. Phys. Rev. Lett. 103, 135004.CrossRefGoogle ScholarPubMed
Kalmykov, S.Y., Beck, A., Davoine, X., Lefebvre, E. & Shadwick, B.A. (2012). Laser plasma acceleration with a negatively chirped pulse: all-optical control over dark current In the blowout regime. New J. Phys. 14, 033025.Google Scholar
Kalmykov, S.Y., Beck, A., Yi, S.A., Khudik, V.N., Downer, M.C., Lefebvre, E., Shadwick, B.A. & Umstadter, D.P. (2011). Electron self-injection into an evolving plasma bubble: Quasi-monoenergetic laser-plasma acceleration in the blowout regime. Phys. Plasmas 18, 056704.Google Scholar
Kostyukov, I., Nerush, E., Pukhov, A. & Seredov, V. (2009). Electron self-injection in multidimensional relativistic-plasma wake fields. Phys. Rev. Lett. 103, 175003.Google Scholar
Kostyukov, I., Nerush, E., Pukhov, A. & Seredov, V. (2010). A multidimensional theory for electron trapping by plasma wake generated in the bubble regime. New J. Phys. 12, 045009.Google Scholar
Kostyukov, I., Pukhov, A. & Kiselev, S. (2004). Phenomenological theory of laser-plasma interaction in “bubble” regime. Phys. Plasmas 11, 52565264.CrossRefGoogle Scholar
Lotov, K.V. (2004). Blowout regimes of plasma wakefield acceleration. Phys. Rev. E 69, 046405.Google Scholar
Lu, W. and Huang, C., Zhou, M., Tzoufras, M., Tsung, F.S., Morl, W. B. & Kat- Souleas, T. (2006). A nonlinear theory for multidimensional relativistic plasma wave wake-fields. Phys. Plasma 13, 056709.CrossRefGoogle Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A. & Silva, L.O. (2007). Generating muliti-gev electron bunches using single stage laser wf ace. In a 3d nonlin. Regime. Phys. Rev. ST Accel. Beams 10, 061301.Google Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Coller, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, S.M., Jaroszynski, D., Langley, A. J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B. & Krushelnick, K. (2004). Monoenergetic beams of relativis- tic electrons from intense laser-plasma interaction. Nature 431, 535538.Google Scholar
Pak, A., Marsh, K.A., Martins, S.F., Lu, W., Mori, W.B. & Joshi, C. (2010). Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003.Google Scholar
Pukhov, A. & Gordienko, S. (2006). Bubble regime of wake field acceleration: similarity theory and optical scalings. Phil. Trans. R. Soc. A 364, 623633.Google Scholar
Pukhov, A. & ter Vehn, J. Meyer (2002). Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355.CrossRefGoogle Scholar
Rosenzweig, J.B., Breizman, B., Katsouleas, T. & Su, J.J. (1991). Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. phys. Rev. A Vol. 44 R6189R6192.Google Scholar
Thomas, A.G.R. (2010). Scalings for radiation from plasma bubbles. Phys. Plasmas 17, 056708.Google Scholar
Wang, X., Zgadzaj, R., Fazel, N., Li, Z., Yi, S. A., Zhang, Xi, Henderson, W., Chang, Y.-Y., Korzekwa, R., Tsai, H.-E., Andn Pal, C.-H., Quevedo, H., Dyer, G., Gaul, E., Martinez, M., Bernstein, A.C., Borger, T., Spinks, M., Donovan, M., Khudik, V., Shvets, G., Ditmire, T. & Downer, M.C. (2013). Quasi-monoenergetic laser-plasma acceleration of electrons to 2 gev. Nat. Com. 4, 1988.Google Scholar
Whittum, D.H. (1992). Electromagnetic instability of the ion-focused regime. Phys. Fluids B 4, 730.CrossRefGoogle Scholar
Yi, S.A., Khudik, V., Kalmykov, S.Y. & Shvets, G. (2011). Hamiltonian analysis of electron self-injection and acceleration into an evolving-plasma bubble. Plasma phys, Control Fusion 53, 014012.Google Scholar
Yi, S.A., Khudik, V., Siemon, C. & Shvetsa, G. (2013). Analytic model of electromagnetic fields around a plasma bubble in the blow-out regime. Phys. Plasmas 20, 013108.Google Scholar
Zeng, M., Davidson, A., Lu, W., An, W., Sheng, Z.-M. & Mori, W. B. (2012). Some observations on trapping in nonlinear multi-dimensional wakes. AlP Conf. Proc. 1507, 351.Google Scholar