Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T21:01:58.189Z Has data issue: false hasContentIssue false

Theoretical calculation of atomic data for plasma spectroscopy

Published online by Cambridge University Press:  22 April 2009

V. Stancalie*
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Laser Department, Bucharest, Romania, Association EURATOM MEdC
*
Address correspondence and reprint requests to: V. Stancalie, National Institute for Laser, Plasma and Radiation Physics, Laser Department, P. O. Box MG-36, Bucharest 077125, Romania. E-mail: viorica.stancalie@inflpr.ro

Abstract

In the present article, a number of theoretical approximations and numerical methods, varying in complexity, are reviewed, in order to facilitate their selection for plasma diagnostic purposes. Results refer to highly charged ions, particularly in the lithium isoelectronic sequence. This article describes progress in understanding the role of laser induced degenerate state phenomenon on resonances obtained by using lasers. This type of process, implicitly included in the R-matrix Floquet calculation, contributes to some degree, to the overall behavior of the resonance profiles. The present article gives comparative results obtained from ab initio non-perturbative treatment and perturbative calculation of autoionization widths in Be-like ions. The effective oscillator strength for complex highly ionized atoms is, also, provided. Such calculations are of interest as they represent accurate benchmark data for beam emission spectroscopy, Zeff analysis, or complex atoms modeling in fusion plasma devices.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berrington, K., Pelan, J. & Quigley, L. (1998). R-matrix calculation of CIII bound and continuum fine-structure states. Phys. Scripta 57, 549555.CrossRefGoogle Scholar
Biedenharn, L.C. (1955). Quantum calculation of Coulomb excitation. I. Phys. Rev. 100, 376393.CrossRefGoogle Scholar
Biedenharn, L.C. & Rose, M.E. (1953). Theory of angular correlation of nuclear radiations. Rev. Mod. Phys. 25, 729776.CrossRefGoogle Scholar
Burke, P.G. & Berrington, K.A. (1993). Atomic and Molecular Processes: An R-matrix Approach. Bristol: IOP Publishing.Google Scholar
Burke, P.G., Francken, P. & Joichain, C.J. (1991). R-matrix Floquet theory of multiphoton processes. J. Phys. B 24, 761790.CrossRefGoogle Scholar
Burke, V.M. & Noble, C.J. (1995). FARM- A flexible asymptotic R-matrix package. Comput. Phys. Commun. 85, 471500.CrossRefGoogle Scholar
Cowan, R.D. (1981). The Theory of Atomic Structure and Spectra. (Sharp, D.H. and Simmons, L.M., eds.) Berkeley: University of California Press.CrossRefGoogle Scholar
Cyr, A., Latinne, O. & Burke, P.G. (1997). R-MATRIX Floquet theory of multiphoton processes: IX. Three-photon laser-induced degenerate states in argon. J. Phys. B. 30, 659666.CrossRefGoogle Scholar
Eissner, W., Jones, M. & Nussbaumer, H. (1974). Techniques for the calculation of atomic structure and radiative data including relativistic corrections. Comput. Phys. Commun. 8, 270306.CrossRefGoogle Scholar
Fearniside, A.S. (1998). Intensity dependence of resonances profiles in multiphoton partial detachment rates of H. J. Phys. B. 31, 275288.CrossRefGoogle Scholar
Froese Fischer, C. (1969). A multi-configuration Hartree-Fock program. Comput. Phys. Commun. 1, 151166.CrossRefGoogle Scholar
Hibbert, A. (1975). CIV3–A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths. Comput. Phys. Commun. 9, 141172.CrossRefGoogle Scholar
Kelly, R.L. (1987). Atomic and ionic spectrum lines of hydrogen through krypton. J. Phys. Ref. Chem. Data, 16, 245248.Google Scholar
Knight, P.L., Lauder, M.A. & Dalton, B.J. (1990). Laser-induced continuum structure. Phys. Rept. 190, 161.CrossRefGoogle Scholar
Kylstra, N.J. & Joichain, C.J. (1998). Double poles of the S matrix in laser-assisted electron-atom scattering. Phys. Rev. A. 57, 412431.CrossRefGoogle Scholar
Kylstra, N.J., Paspalakis, E. & Knight, P.G. (1998). Laser-induced continuum structure in helium: ab initio non-perturbative calculations. J. Phys. B. 31, L719L728.CrossRefGoogle Scholar
Latinne, O., Klistra, N.J., Dörr, M., Purvis, J., Terao-Dunsheath, M., Joichain, C.J., Burke, P.G. & Noble, C.J. (1995). Laser-induced degeneracies involving autoionizing states in complex atoms. Phys. Rev. Lett. 74, 4649.CrossRefGoogle ScholarPubMed
Paspalakalis, E., Kylstra, N.J. & Knight, P.L. (2000). Ab initio, nonperturbative calculations of laser-induced continuum structure in helium. Laser Part. Beams 18, 461466.CrossRefGoogle Scholar
Poirier, M. (1990). Recursion relations on irregular electric multipoles. J. Phys. B. 23, 40714089.CrossRefGoogle Scholar
Poirier, M. (1994). Exchange and fine-structure effects in autoionization of large-angular-momentum doubly excited Rydberg states. Phys. Rev. A. 50, 13351347.CrossRefGoogle ScholarPubMed
Poirier, M. & Semoune, R. (1998). Analysis of electronic correlations in large angular-momentum states using the Coulomb Green's function: excited states in alkaline-earth atoms. J. Phys. B. 31, 14431461.CrossRefGoogle Scholar
Pratt, G.W. (1956). Unrestricted Hartree-Fock method. Phys. Rev. 102, 13031307.CrossRefGoogle Scholar
Sobelman, I. (1992). Atomic Spectra and Radiative Transitions (Toennies, J.P., ed.). New York: Springer-Verlag.CrossRefGoogle Scholar
Sobelman, I.I., Vainshtein, L.A. & Yukov, E.A. (1981). Excitation of Atoms and Broadening of Spectral Lines (Toennies, J.P., ed.). New York: Springer-Verlag.CrossRefGoogle Scholar
Stancalie, V. & Pais, V. (2006). Effective collision strengths for electron-impact excitation of Al10+. Laser Part. Beams 24, 235240.CrossRefGoogle Scholar
Stancalie, V. (2000). Fine-structure atomic data calculation for Al XI. Phys. Sripta 61, 459463.CrossRefGoogle Scholar
Stancalie, V. (2005 a). 1s22pns (1P0) autoionizing levels in Be-like Al and C ions. Phys. Plasmas 12, 043301.CrossRefGoogle Scholar
Stancalie, V. (2005 b). Complements to nonperturbative treatment of radiative damping effect in dielectronic recombination: Δn = 2 transition in CIV. Phys. Plasmas 12, 10075.CrossRefGoogle Scholar
Stancalie, V., Burke, V.M. & Sureau, A. (1999). Forbidden transitions in excitation by electron impact in Al Li-like ion. Phys. Scripta 59, 5254.CrossRefGoogle Scholar
Stancalie, V., Pais, V., Totolici, M. & Mihailescu, A. (2007). Forbidden transitions in excitation by proton impact in Li-like Al ions. Laser Part. Beams 25, 277282.CrossRefGoogle Scholar
Stancalie, V., Sureau, A., Klisnick, A., Moller, C., Guennou, H. & Berete, Y. (1995). Influence of dielectronic recombination on gain of X-ray lasers with Li-like ions. Inst. Phys. Conf. Ser. 140, 129132.Google Scholar