Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T22:17:29.933Z Has data issue: false hasContentIssue false

Time evolution of solid-density plasma during and after irradiation by a short, intense laser pulse

Published online by Cambridge University Press:  25 May 2012

Shixia Luan*
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Wei Yu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
Masakatsu Murakami
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
Hongbin Zhuo
Affiliation:
College of Science, National University of Defense Technology, Changsha, China
Mingyang Yu
Affiliation:
Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China Institute for Theoretical Physics I, Ruhr University, Bochum, Germany
Guangjin Ma
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Kunioki Mima
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
*
Address correspondence and reprint requests to: Shixia Luan, 390 Qinghe Road, Jiading, Shanghai 201800, China. E-mail: sxluan@siom.ac.cn

Abstract

A two-dimensional theoretical model for the evolution of solid-density plasma irradiated by short, intense laser pulse is introduced. The electrons near the target surface are pushed inward by the radiation pressure, leading to a receding electron density jump where the laser is reflected. The electrostatic field of the resulting charge separation eventually balances the radiation pressure at the laser peak. After that the charge separation field becomes dominant. It accelerates and compresses the ions that are left behind until they merge with the compressed electrons, resulting in a high-density plasma peak. The laser pulse reflected from the receding electron density jump loses energy in plasma and suffers Doppler frequency red-shift, which can provide valuable information on the laser absorption rate and the speed of the receding electrons. Electron oscillations, including the u × B oscillations across the density jump at twice the laser frequency during the laser action, as well as the low-frequency oscillations appearing after laser action, are identified.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, A., Reichart, P., Siegele, R., Johnston, P.N. & Jamieson, D.N. (2006). Ion beam ithography using single ions. Nucl. Instrum. Meth. Phys. Res. B 249, 730733.CrossRefGoogle Scholar
Bulanov, S.V. & Khoroshkov, V.S. (2002). Feasibility of using laser ion accelerators in Proton therapy. Plasma Phys. Rep. 28, 453456;CrossRefGoogle Scholar
Berezhiani, V.I., Garuchava, D.P., Mikeladze, S.V., Sigua, K.I., Tsintsadze, N.L., Mahajan, S.M., Kishimoto, Y. & Nishikawa, K. (2005). Fluid-Maxwell simulation of laser pulse dynamics in overdense plasma. Phys. Plasmas 12, 062308.CrossRefGoogle Scholar
Cai, H.B., Zhu, S.P., Chen, M., Wu, S.Z., He, X.T. & Mima, K. (2011). Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas. Phys. Rev. E 83, 036408.CrossRefGoogle ScholarPubMed
Chen, H., Wilks, S.C., Bonlie, J.D., Liang, E.P., Myatt, J., Price, D.F., Meyerhofer, D.D. & Beiersdorfer, P. (2009). Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102, 105001.CrossRefGoogle ScholarPubMed
Disdier, L., Garçonnet, J.P., Malka, G. & Miquel, J.L. (1999). Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse. Phys. Rev. Lett. 82, 14541457.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.CrossRefGoogle Scholar
Humphries, S. & Petillo, J. (2000). Self-magnetic field calculations in ray-tracing codes. Laser Part. Beams 18, 601610.CrossRefGoogle Scholar
Kemp, A.J., Sentoku, Y. & Tabak, M. (2008). Hot-electron energy coupling in ultraintense laser-matter interaction. Phys. Rev. Lett. 101, 075004.CrossRefGoogle ScholarPubMed
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Kruer, W.L. & Estabrook, K. (1985). J × B heating by very intense laser light. Phys. Fluids B 28, 430432.CrossRefGoogle Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225534.CrossRefGoogle Scholar
Liu, M.P., Xie, B.S., Huang, Y.S., Liu, J. & Yu, M.Y. (2009). Enhanced ion acceleration by collisionless electrostatic shock in thin foils irradiated by ultraintense laser pulse. Laser Part. Beams 27, 327333.CrossRefGoogle Scholar
Luan, S.X., Yu, W., Yu, M.Y., Ma, G.J., Zhang, Q.J., Sheng, Z.M. & Murakami, M. (2011). Analytical model for interaction of short intense laser pulse with solid target. Phys. Plasmas 18, 042701.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.CrossRefGoogle ScholarPubMed
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.CrossRefGoogle Scholar
Mckenna, P., Carroll, D.C., Lundh, O., Nurnberg, F., Markey, K., Bandyopadhyay, S., Batani, D., Evans, R.G., Jafer, R., Kar, S., Neely, D., Pepler, D., Quinn, M.N., Redaelli, R., Roth, M., Wahlstrom, C.G., Yuan, X.H. & Zepf, M. (2008). Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets. Laser Part. Beams 26, 591596.CrossRefGoogle Scholar
Mishra, R., Sentoku, Y. & Kemp, A.J. (2009). Hot electron generation forming a steep interface in superintense laser-matter interaction. Phys. Plasmas 16, 112704.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Obenschain, S.P. & Luhmann, N.C. (1979). Self-magnetic-field generation in a plasma. Phys. Rev. Lett. 42, 311314.CrossRefGoogle Scholar
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond Lasers. Sci. 264, 917924.CrossRefGoogle ScholarPubMed
Salamin, Y.I., Harman, Z. & Keitel, C.H. (2008). Direct high-power laser acceleration of ions for medical applications. Phys. Rev. Lett. 100, 155004.CrossRefGoogle ScholarPubMed
Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasimonoenergetic protons from microstructured targets. Nat. 439, 445448.CrossRefGoogle ScholarPubMed
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C.Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tushentsov, M., Kim, A., Cattani, F., Anderson, D. & Lisak, M. (2001). Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions.Phys. Rev. Lett. 87, 275002.CrossRefGoogle ScholarPubMed
Umstadter, D. (2003). Relativistic laser–plasma interactions. J. Phys. D 36, 151165.CrossRefGoogle Scholar
Wang, X., Yu, W., Yu, M.Y., Senecha, V.K., Xu, H., Wang, J.W., Yuan, X. & Sheng, Z.M. (2009). Efficient acceleration of a small dense plasma pellet by consecutive action of multiple short intense laser pulses. Laser Part. Beams 27, 629634.CrossRefGoogle Scholar
Wang, X., Yu, W., Yu, M.Y., Xu, H., Wang, J.W. & Yuan, X. (2009). Simple model for wakefield excitation by intense short-pulse laser in underdense plasma. Phys. Plasmas 16, 053107.CrossRefGoogle Scholar
Wilks, S.C. & Kruer, W.L. (1997). Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quan. Elect. 33, 19541968.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Yu, T.P., Pukhov, A., Shvets, G. & Chen, M. (2010). Simulations of stable compact proton beam acceleration from a two-ion-species ultrathin foil. Phys. Rev. Lett. 105, 065002.CrossRefGoogle Scholar
Yu, W., Xu, H., He, F., Yu, M.Y., Ishiguro, S., Zhang, J. & Wong, A.Y. (2005). Direct acceleration of solid-density plasma bunch by ultraintense laser. Phys. Rev. E 72, 046401.CrossRefGoogle ScholarPubMed
Yu, W., Yu, M.Y., Sheng, Z.M. & Zhang, J. (1998). Model for fast electrons in ultrashort-pulse laser interaction with solid targets. Phys. Rev. E 58, 24562460.CrossRefGoogle Scholar
Zhuo, H.B., Chen, Z.L, Yu, Wei., Sheng, Z.M., Yu, M.Y., Jin, Z. & Kodama, R. (2010). Quasimonoenergetic proton bunch generation by dual-peaked electrostatic-field acceleration in foils irradiated by an intense linearly polarized laser. Phys. Rev. Lett. 105, 065003.CrossRefGoogle ScholarPubMed