Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T12:17:25.738Z Has data issue: false hasContentIssue false

T-matrix Approximation of the Stopping Power

Published online by Cambridge University Press:  09 March 2009

D.O. Gericke
Affiliation:
Department of Physics, E.-M.-Arndt University, D-17487 Greifswald
M. Schlanges
Affiliation:
Department of Physics, E.-M.-Arndt University, D-17487 Greifswald
W.D. Kraeft
Affiliation:
Department of Physics, E.-M.-Arndt University, D-17487 Greifswald

Abstract

An expression for the stopping power is derived in the quantum T-matrix approximation. The transport cross sections needed for a numerical evaluation are calculated using a scattering phase-shift analysis. Numerical results are given for the stopping power of an electron beam running into an electron gas. The temperature and density dependencies of the stopping power are discussed. Finally, dynamical screening is included in the weak coupling limit according to a kinetic equation proposed by H.A. Gould and H.E. DeWitt.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, R.C. & Meyer-Ter-Vehn, J. 1988. Z. Phys. D 9, 65.Google Scholar
Balescu, R. 1960 Phys. Fluids 3, 52.Google Scholar
Bethe, H. 1930 Ann. Phys. 5, 325.Google Scholar
Boine-Frankenheim, O. 1996 Phys. of Plasma 3, 792.Google Scholar
Brouwer, H.H. et al. 1990 Contrib. Plasma Phys. 30, 263.CrossRefGoogle Scholar
Deutsch, C. 1986 Ann. Phys. (Paris) 11, 1.Google Scholar
Gould, H.A. & Dewitt, H.E. 1967 Phys. Rev. 155, 68.Google Scholar
Jacoby, J. et al. 1995 Phys. Rev. Lett. 74, 1550.Google Scholar
Joachain, C.J. 1979 Quantum Collision Theory (North-Holland, Amsterdam).Google Scholar
Kadanoff, L.P. & Baym, G. 1962 Quantum Statistical Mechanics (W.A. Benjamin Inc., New York).Google Scholar
Kraeft, W.D. & Strege, B. 1988 Physica A 149.Google Scholar
Kraeft, W.D. et al. 1986 Quantum Statistic of Charged Particle Systems (Plenum, New York).Google Scholar
Kremp, D. et al. 1986 ZIE Preprint 86–3 Part I.Google Scholar
Lenard, A. 1960 Ann. Phys. (N.Y.) 10, 390.Google Scholar
Luft, M. et al. 1990 Contrib. Plasma Phys. 30, 369.Google Scholar
Miley, G.H. (ed.) 1994 Laser Interaction and Related Plasma Phenomena (American Institute of Physics, New York).Google Scholar
Ordonez, C.A. & Molina, M.I. 1994 Phys. Rev. Lett. 72, 2407.Google Scholar
Peter, Th. & Meyer-Ter-Vehn, J. 1991 Phys. Rev. A 43, 198.Google Scholar
Schlanges, M. 1985 Thesis II, Rostock Univ.Google Scholar
Schlanges, M. & Bornath, Th. 1987 Wiss. Z. Univ. Rostock, 65.Google Scholar
Strachan, J.D. et al. 1994 Phys. Rev. Lett. 72, 3526.Google Scholar
Taylor, J.R. 1972 Scattering Theory (Wiley, New York).Google Scholar