Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T07:13:57.428Z Has data issue: false hasContentIssue false

Two-dimensional PIC simulation of atomic clusters in intense laser fields

Published online by Cambridge University Press:  01 June 2004

F. GRESCHIK
Affiliation:
Institut für Theoretische Physik A, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
H.-J. KULL
Affiliation:
Institut für Theoretische Physik A, Rheinisch-Westfälische Technische Hochschule Aachen, Germany

Abstract

Collective absorption of intense laser pulses by atomic clusters is studied by PIC simulations. The cluster is modeled in two-dimensional calculations as a cylindrical plasma column with a diameter of D = 6.4 nm and an initial electron density of ne0 = 1023 cm−3. The frequency and intensity dependence of absorption is discussed. It is found that nonresonant absorption by electron emission increases as a power law with the laser intensity. The absorbed energy per electron reaches a maximum of about Wmax = mωp2D2p: plasma frequency, m: electron mass) at the intensity where ionization saturates.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Birdsall, C.K. & Langdon, A.B. (1991). Plasma Physics via Computer Simulation. Bristol and Philadelphia: IOP Publishing.
Bonnaud, G., Gibbon, P., Kindel, J. & Williams, E. (1991). Laser interaction with a sharp-edged overdense plasma. Laser and Particle Beams 9, 339354.Google Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.Google Scholar
Ditmire, T. (1998). Simulation of exploding clusters ionized by high-density femtosecond laser pulses. Phys. Rev. A 57, R4094R4097.Google Scholar
Ditmire, T., Donnelly, T., Falcone, R.W. & Perry, M.D. (1995). Strong X-ray emission from high-temperature plasmas produced by intense irradiation of clusters. Phys. Rev. Lett. 75, 31223125.Google Scholar
Ditmire, T., Donnelly, T., Rubenchik, A.M., Falcone, R.W. & Perry, M.D. (1996). Interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 33793402.Google Scholar
Ditmire, T., Smith, R.A., Tisch, J.W.G. & Hutchinson, M.H.R. (1997a). High intensity laser absorption by gases of atomic clusters. Phys. Rev. Lett. 78, 31213124.Google Scholar
Ditmire, T., Springate, E., Tisch, J.W.G., Shao, Y.L., Mason, M.G., Hay, N., Marangos, J.P. & Hutchinson, M.H.R. (1997b). High-energy ions produced in explosions of superheated atomic clusters. Nature (London) 386, 5456.Google Scholar
Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G. & Wharton, K.B. (1999). Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489492.Google Scholar
Görlinger, J., Plagne, L. & Hull, H.-J. (2000). Above-barrier ionization and quantum interference in strong laser fields. Appl. Phys. B 71, 331336.Google Scholar
Greschik, F., Dimou, L. & Hull, H.-J. (2000). Electrostatic model of laser pulse absorption by thin foils. Laser and Particle Beams 18, 367373.Google Scholar
McPherson, A., Thompson, B.D., Borisov, A.B., Boyer, K. & Rhodes, C. (1994). Multiphoton-induced X-ray emission at 4–5 keV from Xe atoms with multiple core vacancies. Nature (London) 370, 631634.Google Scholar
Posthumus, J. (2001). Molecules and clusters in intense fields. The Edinburgh Building, Cambridge CB2 2RU, UK: Cambridge University Press.
Shao, Y.L., Ditmire, T., Tisch, J.W.G., Springate, E., Marangos, J.P. & Hutchinson, M.H.R. (1996). Multi-keV electron generation in the interaction of intense laser pulses with Xe clusters. Phys. Rev. Lett. 77, 33433346.Google Scholar