Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T13:45:08.809Z Has data issue: false hasContentIssue false

Two-frequency undulator usage in compact self-amplified spontaneous emission free electron laser in Roentgen range

Published online by Cambridge University Press:  12 April 2017

K. Zhukovsky*
Affiliation:
Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
I. Potapov
Affiliation:
Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
*
Address correspondence and reprint requests to: K. Zhukovsky, Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia. E-mail: zhukovsk@physics.msu.ru

Abstract

The generation of harmonics in two-frequency undulator in a self-amplified spontaneous emission free electron laser (SASE FEL) is studied in order to produce Roentgen radiation in a relatively compact sized installation. The dynamics of SASE FEL is analyzed with the help of the phenomenological model to obtain the maximum of the X-ray high-harmonic power. The model accounts for the properties of the undulator magnetic field and of the electron beam and includes the major sources of losses, such as the electron energy spread, etc. It is compared and calibrated with the existing data on a FEL experiment. The advantages of the two-frequency undulator for Roentgen SASE FEL are demonstrated and the possibility to generate powerful mild Roentgen radiation at already ~25 m length is shown. The evolution of the bunching coefficients for high harmonics is studied together with the evolution of the FEL-induced energy spread. The linear and non-linear regimes are explored for common and for two-frequency undulators The usage of the two-frequency undulator for cascade SASE FEL with high X-ray harmonic power and high-harmonic bunching coefficients with low-induced energy spread is proposed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alferov, D.F., Bashmakov, U.A. & Cherenkov, P.A. (1989). Radiation from relativistic electrons in a magnetic undulator. Usp. Fis. Nauk 32, 200227.Google Scholar
Alferov, D.F., Bashmakov, Yu.A. & Bessonov, E.G. (1973). Radiation of relativistic particles in an undulator. Sov. Phys. – Tech. Phys. 17, 15401550.Google Scholar
Artcimovich, A.L. & Pomeranchuk, I.J. (1945). Radiation from fast electrons in a magnetic field. J. Phys. USSR 9, 267276.Google Scholar
Artyukov, I.A., Bessonov, E.G. & Gorbunkov, M.V. (2016). Thomson linac-based X-ray generator: A primer for theory and design. Laser Part. Beams 34, 637644.CrossRefGoogle Scholar
Bartnik, A., Fedosejevs, R., Wachulak, P., Fiedorowicz, H., Serbanescu, C., Saiz, E.G., Riley, D., Toleikis, S. & Neely, D. (2013). Photo-ionized neon plasmas induced by radiation pulses of a laser-plasma EUV source and a free electron laser FLASH. Laser Part Beams 31, 195201.CrossRefGoogle Scholar
Bessonov, E.G. (2007). Light sources based on relativistic electron and ion beams. Proc. SPIE 6634, article ID 66340X. doi: 10.1117/12.741920.CrossRefGoogle Scholar
Bessonov, E.G., Gorbunkov, M.V., Ishkhanov, B.S., Kostryukov, P.V., Maslova, Yu., Y.A., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part Beams 26, 489495.Google Scholar
Bordovitsyn, V.A. (Ed.) (1999). Synchrotron Radiation Theory and its Development: In the Memory of I.M.Ternov. Series on Synchrotron Radiation Technique and Applications, Vol. 5. Singapore: World Scientific Publishing.Google Scholar
Dattoli, G. (1993). Lectures on the Free Electron Lasers Theory and related Topics, Vol. 637. Singapore: World Scientific Publishing.Google Scholar
Dattoli, G., Giannessi, L., Ottaviani, P.L. & Ronsivalle, C. (2004). Semi-analytical model of self-amplified spontaneous-emission free-electron lasers, including diffraction and pulse-propagation effects. J. Appl. Phys. 95, 32063210. doi: 10.1063/1.1645979.Google Scholar
Dattoli, G., Mezi, L., Ottaviani, P.L. & Pagnutti, S. (2006 b). Theory of high gain free-electron lasers operating with segmented undulators. J. Appl. Phys. 99, 044907.1044907.6. doi: 10.1063/1.2171810.Google Scholar
Dattoli, G., Mikhailin, V.V., Ottaviani, P.L. & Zhukovsky, K. (2006 a). Two-frequency undulator and harmonic generation by an ultrarelativistic electron. J. Appl. Phys. 100, 084507.1084507.12.Google Scholar
Dattoli, G., Mikhailin, V.V. & Zhukovsky, K. (2008). Undulator radiation in a periodic magnetic field with a constant component. J. Appl. Phys. 104, 124507.1124507.8.Google Scholar
Dattoli, G., Mikhailin, V.V. & Zhukovsky, K.V. (2009). Influence of a constant magnetic field on the radiation of a planar undulator. Moscow Univ. Phys. Bull. 64, 507512.Google Scholar
Dattoli, G., Mirian, N.S., DiPalma, E. & Petrillo, V. (2014). Two-colour free-electron laser with two orthogonal undulators. Phys. Rev. ST – AB 17, article ID 050702.Google Scholar
Dattoli, G., Ottaviani, P.L. & Pagnutti, S. (2005 b). Nonlinear harmonic generation in high-gain free-electron lasers. J. Appl. Phys. 97, 1131021113102.7. doi: 10.1063/1.1886890.CrossRefGoogle Scholar
Dattoli, G., Ottaviani, P.L. & Pagnutti, S. (2007). Booklet for FEL Design. Frascati, Italy: ENEA Pubblicazioni.Google Scholar
Dattoli, G., Ottaviani, P.L. & Renieri, A. (2005 a). Free electron laser high gain devices. Laser Part. Beams 23, 303307.Google Scholar
Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., Brachmann, A., Bucksbaum, P., Coffee, R., Decker, F.-J., Ding, Y., Dowell, D., Edstrom, S., Fisher, A., Frisch, J., Gilevich, S., Hastings, J., Hays, G., Hering, Ph., Huang, Z., Iverson, R., Loos, H., Messerschmidt, M., Miahnahri, A., Moeller, S., Nuhn, H.-D., Pile, G., Ratner, D., Rzepiela, J., Schultz, D., Smith, T., Stefan, P., Tompkins, H., Turner, J., Welch, J., White, W., Wu, J., Yocky, G. & Galayda, J. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641647. doi: 10.1038/NPHOTON.2010.176.Google Scholar
Giannessi, L., Alesini, D., Antici, P., Bacci, A., Bellaveglia, M., Boni, R., Boscolo, M., Briquez, F., Castellano, M., Catani, L., Chiadroni, E., Cianchi, A., Ciocci, F., Clozza, A., Couprie, M.E., Cultrera, L., Dattoli, G., Del Franco, M., Dipace, A., Di Pirro, G., Doria, A., Drago, A., Fawley, W.M., Ferrario, M., Ficcadenti, L., Filippetto, D., Frassetto, F., Freund, H.P., Fusco, V., Gallerano, G., Gallo, A., Gatti, G., Ghigo, A., Giovenale, E., Marinelli, A., Labat, M., Marchetti, B., Marcus, G., Marrelli, C., Mattioli, M., Migliorati, M., Moreno, M., Mostacci, A., Orlandi, G., Pace, E., Palumbo, L., Petralia, A., Petrarca, M., Petrillo, V., Poletto, L., Quattromini, M., Rau, J.V., Reiche, S., Ronsivalle, C., Rosenzweig, J., Rossi, A.R., Rossi Albertini, V., Sabia, E., Serafini, L., Serluca, M., Spassovsky, I., Spataro, B., Surrenti, V., Vaccarezza, C., Vescovi, M. & Vicario, C. (2011). Self-amplified spontaneous emission for a single pass free-electron laser. Phys. Rev. ST-AB 14, article ID 060712. doi: 10.1103/PhysRevSTAB.14.060712.Google Scholar
Ginzburg, V.L. (1947). On the radiation of microradiowaves and their absorbtion in the air. Isvestia Akademii Nauk SSSR (Fizika) 11, 165169.Google Scholar
Huang, H. & Tallents, G.J. (2009). The output of a laser amplifier with simultaneous amplified spontaneous emission and an injected seed. Laser Part Beams 27, 393398.CrossRefGoogle Scholar
Kumar, S., Kang, H.-S. & Kim, D.-E. (2012). For the generation of an intense isolated pulse in hard X-ray region using X-ray free electron laser. Laser Part Beams 30, 397406.CrossRefGoogle Scholar
Lee, R.W., Baldis, H.A. & Cauble, R.C. (2002). Plasma-based studies with intense X-ray and particle beam sources. Laser Part Beams 20, 527536.Google Scholar
McNeil, B.W.J. & Thompson, N.R. (2010). X-ray free-electron lasers. Nat. Photonics 4, 814821. doi: 10.1038/nphoton.2010.239.CrossRefGoogle Scholar
Mikhailin, V.V., Zhukovsky, K.V. & Kudiukova, A.I. (2014). On the radiation of a planar undulator with constant magnetic field on its axis taken into account. J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 422428.Google Scholar
Mirian, N.S., Dattoli, G., DiPalma, E. & Petrillo, V. (2014). Production and properties of two-color radiation generated by using a Free-Electron Laser with two orthogonal undulators. Nucl. Instrum. A 767, 227234.Google Scholar
Mishra, G., Gehlot, M. & Hussain, J.-K. (2009). Spectral properties of bi-harmonic undulator radiation. Nucl. Instrum. A. 603, 495503.CrossRefGoogle Scholar
Motz, H., Thon, W. & Whitehurst, R.N.J. (1953). Experiments on radiation by fast electron beams. Appl. Phys. 24, 826832.CrossRefGoogle Scholar
Quattromini, M., Artioli, M., Di Palma, E., Petralia, A. & Giannessi, L. (2012). Focusing properties of linear undulators. Phys. Rev ST – AB 15, article ID 080704. doi: 10.1103/PhysRevSTAB.15.080704.Google Scholar
Ternov, I.M., Mikhailin, V.V. & Khalilov, V.R. (1985). Synchrotron Radiation and its Applications. (translated from the Russian by Amoretty, S.J.). Chur, London, Paris, New York (NY): Harwood Academic Publishers.Google Scholar
Tripathi, S. & Mishra, G. (2011). Three frequency undulator radiation and free electron laser gain. Rom. J. Phys. 56, 411424.Google Scholar
Vagin, P. V., Englisch, U., Müller, T. & Tischer, M. (2011). Commissioning experience with insertion devices at PETRA III. J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 10551057.CrossRefGoogle Scholar
Zastrau, U., Burian, T. & Chalupsky, J. (2012). XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser Part. Beams 30, 4556.CrossRefGoogle Scholar
Zhirong, H. & Kwang-Je, K. (2007). Review of x-ray free-electron laser theory. Phys. Rev. ST – AB 10, article ID 034801. doi: 10.1103/PhysRevSTAB.10.034801.Google Scholar
Zhukovsky, K. (2012). Undulator radiation in multiple magnetic fields. In Synchrotron: Design, Properties and Applications (Chua, D.M. and Toh, H.F., Eds), pp. 3992. New York (NY), USA: Nova Science Publishers, Inc.Google Scholar
Zhukovsky, K. (2014 b). Analytical account for a planar undulator performance in a constant magnetic field. J. Electromagn. Wave 28, 18691887.CrossRefGoogle Scholar
Zhukovsky, K. (2015 b). Harmonic generation by ultrarelativistic electrons in a planar undulator and the emission-line broadening. J. Electromagn. Wave 29, 132142.Google Scholar
Zhukovsky, K. (2015 c). High harmonic generation in the undulators for free electron lasers. Opt. Commun. 353, 3541.Google Scholar
Zhukovsky, K. (2016 a). Emission and tuning of harmonics in a planar two-frequency undulator with account for broadening. Laser Part. Beams 34, 447456. doi: 10.1017/S0263034616000264.Google Scholar
Zhukovsky, K. (2016 b). High harmonic generation in undulators for FEL. Nucl. Instrum. B 369, 914. doi: 10.1016/j.nimb.2015.10.041.Google Scholar
Zhukovsky, K.V. (2014 a). Inhomogeneous and homogeneous losses and magnetic field effect in planar undulator radiation. Prog. Electromagn. Res. B 59, 245256.CrossRefGoogle Scholar
Zhukovsky, K.V. (2014 c). A model for analytical description of magnetic field effects and losses in a planar undulator radiation. J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 10681081.CrossRefGoogle Scholar
Zhukovsky, K.V. (2015 a). Harmonic radiation in a double frequency undulator with account for broadening. Moscow Univ. Phys. Bull. 70, 232239.Google Scholar
Ziaja, B., Weckert, E. & Möller, T. (2007). Statistical model of radiation damage within an atomic cluster irradiated by photons from free-electron-laser. Laser Part. Beams 25, 407414.CrossRefGoogle Scholar