Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T11:48:20.381Z Has data issue: false hasContentIssue false

Obsidian-Hydration Dating, the Coner Phase, and Revisionist Chronology at Copan, Honduras

Published online by Cambridge University Press:  20 January 2017

Geoffrey E. Braswell*
Affiliation:
Department of Anthropology, Tulane University, New Orleans, LA 70118

Abstract

The technique of obsidian-hydration dating contains great potentials for error, from both laboratory determinations of rate constants and measurements of effective hydration temperatures (EHTs) in the field. The rate constants used to determine these dates are of questionable validity and need to be independently verified. Significantly, no measurements of EHTs were taken at the site of Copán, Honduras, until the majority of the obsidianhydration dates were calculated. An error of but a few Kelvins in estimated EHT can lead to dates that are in error by several centuries. In view of the likelihood of large errors in the Copán obsidian dates, the assertion that the Late Classic Coner phase should be extended beyond A. D. 900 (Webster and Freter 1990a) is premature.

La técnica de fechamiento por hidratación de la obsidiana tiene errores potenciales que resultan no sólo de determinaciones en el laboratorio de las constantes utilizados en la ecuación de Arrhenius sino también de las medidas de temperaturas efectivas para hidratación (TEH) en el campo. Las constantes utilizadas para determinar la fecha alargada de la fase Coner en el Clásico Tardío en Copán, Honduras, son de validez discutible y les falta verificación independiente. Además, ningún TEH ha sido medida en Copán. Un error de muy pocos grados Kelvin puede resultar en errores de varios siglos. Adicionalmente las fechas radiocarbónicas y arqueomagnéticas, y otros restos arqueológicos en este resumen no nos obligan a extender los límites generalmente aceptados de la fase Coner. A causa de la probabilidad de errores grandes en las técnicas utilizadas por Webster y Freter (1990a) para obtener las fechas nuevas en Copán, no existe suficiente evidencia para apoyar la tesis de que la fase Coner debe extenderse después de aproximadamente 900 D. C.

Type
Articles
Copyright
Copyright © Society for American Archaeology 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Abrams, E. M., and Rue, D. J. 1988 The Causes and Consequences of Deforestation Among the Prehistoric Maya. Human Ecology 16:377395.Google Scholar
Amaroli, P. 1986 En la busqueda de Cuscatlán: Un proyecto etnohistórico y arqueológico. Ms. on file, Patronato Pro-Patrimonio Cultural, San Salvador.Google Scholar
Ambrose, W. R. 1976 Intrinsic Hydration Rate Dating of Obsidian. In Advances in Obsidian Glass Studies, edited by R. E. Taylor, pp. 81105. Noyes, Park Ridge, New Jersey.Google Scholar
Ambrose, W. R. 1984 Soil Temperature Monitoring at Lake Mungo. Australian Archaeology 19:6474.Google Scholar
Andrews, E. W., Fash, V, and , B. W. 1992 Continuity and Change in a Royal Maya Residential Complex at Copán. Ancient Mesoamerica 3:6388.Google Scholar
Andrews, E. W., Hammond, V, and , N. 1990 Redefinition of the Swasey Phase at Cuello, Belize. American Antiquity 55:570584.Google Scholar
Bard, E. , Hamelin, B., and Fairbanks, R. G. 1990a Calibration of the 14C Timescale over the Past 30,000 Years Using Mass Spectographic U-Th Ages from Barbados Corals. Nature 345:405410.Google Scholar
Bard, E. , Hamelin, B., and Fairbanks, R. G. 1990b U-Th Ages Obtained by Mass Spectrometry in Corals from Barbados: Sea Level During the Past 130,000 Years. Nature 346:456458.Google Scholar
Bates, J. K., Abrajano, T. A. Jr., Ebert, W. L., Mazer, J. J., and Gerding, T. J. 1988 Experimental Hydration Studies of Natural and Synthetic Glasses. In Materials Issues in Art and Archaeology, edited by E. Sayre, P. Vandiver, J. Druzik, and C. Stevenson, pp. 237244. Materials Research Society Symposium Proceedings 123. Materials Research Society, Pittsburgh.Google Scholar
Bocock, K. L., Jeffers, J. N. R., Lindley, D. K., Adamson, J. K., and Gill, C. A. 1977 Estimating Woodland Soil Temperature from Air Temperature and Other Climatic Variables. Agricultural Meteorology 18:351372.Google Scholar
Boggs, S. H. 1943 Observaciones respecto a la importancia de “Tazumal” en la prehistoria salvadoreña. Tzunpame 3: 127133. San Salvador.Google Scholar
Boggs, S. H. 1945 Informe sobre la tercera temporada de excavaciones en las ruinas de “Tatzumal.” Tzunpame 5:3345. San Salvador.Google Scholar
Boggs, S. H. 1950 Archeological Excavations in El Salvador. In For the Dean, Essays in Anthropology in Honor of Byron S. Cummings, edited by E. K. Reed and D. S. King, pp. 259276. Hohokam Museums Association, Santa Fe.Google Scholar
Boggs, S. H. 1962 Excavations at Tazumal, El Salvador. Year Book of the American Philosophical Society, pp. 488491. Philadelphia.Google Scholar
Boggs, S. H. 1963 Excavations at Tazumal, El Salvador. Year Book of the American Philosophical Society, pp. 505507. Philadelphia.Google Scholar
Brown, K. L. 1978 The Ceramics of the Southern Half of the Valley of Guatemala. In The Ceramics of Kaminaljuyu, Guatemala, edited by R. K. Wetherington, pp. 151172. Pennsylvania State University Monograph Series, University Park, Pennsylvania.Google Scholar
Carson, J. E. 1963 Analysis of Soil and Air Temperatures by Fourier Techniques. Journal of Geophysical Research 68: 22172232.Google Scholar
Clark, D. E., Dilmore, M. F., Ethridge, E. C., and Hench, L. L. 1976 Aqueous Corrosion of Soda-Silica and Soda-Lime-Silica Glass. Journal of the American Ceramic Society 59:6265.Google Scholar
Cleland, J. 1990 Induced Hydration at Coso: Part III. Paper presented at the 24th Annual Meeting of the Society for California Archaeology, Foster City, California.Google Scholar
Culbert, T. P. 1965 The Ceramic History of the Central Highlands of Chiapas, Mexico. Papers of the New World Archaeological Foundation No. 19. New World Archaeological Foundation, Provo, Utah.Google Scholar
De Atley, S. P., and Findlow, F. J. 1980 A New Obsidian Hydration Rate in the Greater Southwest. North American Archaeologist 1:139144.Google Scholar
Ericson, J. E. 1975 New Results in Obsidian Hydration Dating. World Archaeology 7:151159.Google Scholar
Ericson, J. E. 1988 Obsidian Hydration Rate Development. In Materials Issues in Art and Archaeology, edited by E. V. Sayre, P. Vandiver, J. Druzik, and C. Stevenson, pp. 215224. Materials Research Society Symposium Proceedings 123. Materials Research Society, Pittsburgh.Google Scholar
Fash, W. L., and Sharer, R. J. 1991 Sociopolitical Developments and Methodological Issues at Copán, Honduras: A Conjunctive Perspective. Latin American Antiquity 2:166187.Google Scholar
Fillet, S. , Vernaz, E., Nogues, J. L., and Jacquet-Francillon, N. 1986 Corrosion Rate of Nuclear Glass in Saturated Media. Advances in Ceramics 20:443453.Google Scholar
Findlow, F. J., Martin, P. M., and Ericson, J. E. 1982 An Examination of the Effects of Temperature Variation on the Hydration Characteristics of Two California Obsidians. North American Archaeologist 3:3749.CrossRefGoogle Scholar
Fowler, W. R. Jr. 1981 The Pipil-Nicarao of Central America. Unpublished Ph.D. dissertation, Department of Archaeology, University of Calgary, Calgary.Google Scholar
Fowler, W. R. Jr. 1989 The Cultural Evolution of Ancient Nahua Civilizations: The Pipil-Nicarao of Central America. University of Oklahoma Press, Norman, Oklahoma.Google Scholar
Freter, A. 1988 The Classic Maya Collapse at Copán, Honduras: A Regional Settlement Perspective. Unpublished Ph.D. dissertation, Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania.Google Scholar
Friedman, I. , and Trembour, F. W. 1983 Obsidian Hydration Update. American Antiquity 48:544547.Google Scholar
Hench, L. L., Clark, D. E., and Yen-Bower, E. L. 1980 Corrosion of Glasses and Glass Ceramics. Nuclear and Chemical Waste Management 1:5975.Google Scholar
Hurtado de Mendoza, L. 1981 Estimating a Hydration Rate for Chimaltenango Obsidian. American Antiquity 46:159162.Google Scholar
Jackson, R. J. 1984 Current Problems in Obsidian Hydration Analysis. In Obsidian Studies in the Great Basin, edited by R. E. Hughes, pp. 103116. Contributions of the University of California Archaeological Research Facility No. 45. Berkeley.Google Scholar
Jackson, T. L. 1986 Late Prehistoric Obsidian Exchange in Central California. Unpublished Ph.D. dissertation, Department of Anthropology, Stanford University, Stanford, California.Google Scholar
Kaufman, T. 1980 Early Prehistory of the Clear Lake Area, Lake County, California. Unpublished Ph.D. dissertation, Department of Anthropology, University of California, Los Angeles.Google Scholar
Kerr, R. A. 1990 Coral Pushes Back the Past. Science 248:1314.Google Scholar
Kimberlin, J. 1976 Obsidian Hydration Rate Determinations on Chemically Characterized Samples. In Advances in Obsidian Glass Studies, edited by R. E. Taylor, pp. 6380. Noyes Press, Park Ridge, New Jersey.Google Scholar
Leach, B., and Hamel, G. 1984 The Influence of Archaeological Soil Temperatures on Obsidian Dating in New Zealand. New Zealand Journal of Science 27:399408.Google Scholar
Lee, R. 1969 Chemical Temperature Integration. Journal of Applied Meteorology 8:423430.Google Scholar
Lee, T. A. 1978 The Origin and Development of Plumbate Pottery. Revista Mexicana de Estudios Antropológicos XXV(3):287300.Google Scholar
Levi, B. G. 1990 Uranium-Thorium Dating Sets the Clock Back on Carbon-14 Ages. Physics Today 43:2021.Google Scholar
Lowe, G. W., and Mason, J. A. 1965 Archaeological Survey of the Chiapas Coast, Highlands, and Upper Grijalva Basin. In Archaeology of Southern Mesoamerica, edited by G. R. Willey, pp. 195236. Handbook of Middle American Indians, vol. 2, R. Wauchope, general editor. University of Texas Press, Austin.Google Scholar
Lowe, G. W., Lee, T. A., and Martinez Espinosa, E. 1982 Izapa: An Introduction to the Ruins and Monuments. Papers of the New World Archaeological Foundation No. 31. New World Archaeological Foundation, Provo, Utah.Google Scholar
Mazer, J. J., Stevenson, C. M., Ebert, W. L., and Bates, J. K. 1991 The Experimental Hydration of Obsidian as a Function of Relative Humidity and Temperature. American Antiquity 56:504513.Google Scholar
Meighan, C. W. 1983 Obsidian Hydration Dating in California: Theory and Practice. American Antiquity 48:600609.Google Scholar
Michels, J. W. 1982 The Hydration Rate for Ixtepeque Obsidian at Archaeological Sites in the Department of Chiquimula, Guatemala. MOHLAB Technical Report No. 7. State College, Pennsylvania.Google Scholar
Michels, J. W. 1986 Obsidian Hydration Dating. Endeavor (n.s.) 10:97100.Google Scholar
Michels, J. W., Tsong, I. S. T., and Smith, G. A. 1983 Experimentally Derived Hydration Rates in Obsidian Dating. Archaeometry 25:107117.Google Scholar
Minor, R. 1977 An Obsidian Hydration Rate for the Lower Columbia River Valley. American Antiquity 42:616619.CrossRefGoogle Scholar
Monastersky, R. 1990 Coral Corrects Carbon Dating Problems. Science News 137:356.Google Scholar
Neff, H. , and Bishop, R. L. 1988 Plumbate Origins and Development. American Antiquity 53:505522.Google Scholar
Origer, T. M. 1987 Temporal Control in the Southern North Coast Ranges of California: The Application of Obsidian Hydration Analysis. Papers in Northern California Anthropology No. 1. Northern California Anthropological Group, Berkeley.Google Scholar
Parsons, L. A. 1967–1969 Bilbao, Guatemala. 2 vols. Publications in Anthropology Nos. 11 and 12. Milwaukee Public Museum, Milwaukee.Google Scholar
Ridings, R. 1991 Obsidian Hydration Dating: The Effects of Mean Exponential Ground Temperature and Depth of Artifact Recovery. Journal of Field Archaeology 18:7785.Google Scholar
Rue, D. J. 1986 A Palynological Analysis of Pre-Hispanic Human Impact in the Copán Valley, Honduras. Unpublished Ph.D. dissertation, Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania.Google Scholar
Rue, D. J. 1987 Early Agriculture and Early Postclassic Maya Occupation in Western Honduras. Nature 326:285286.Google Scholar
Scheetz, B. E., and Stevenson, C. M. 1988 The Role of Resolution and Sample Preparation in Hydration Rim Measurement: Implications for Experimentally Determined Hydration Rates. American Antiquity 53:110117.Google Scholar
Shade, J. W., and Strachan, D. M. 1986 Effect of High Surface Area to Solution Volume Ratios on Waste Glass Leaching. American Ceramic Society Bulletin 65:15681573.Google Scholar
Sharer, R. J. 1978 Pottery and Conclusions. The Prehistory of Chalchuapa, El Salvador, vol. 3, edited by R. J. Sharer. University of Pennsylvania Press, Philadelphia.Google Scholar
Sheehy, J. J. 1991 Structure and Change in a Late Classic Maya Domestic Group at Copán, Honduras. Ancient Mesoamerica 2:119.Google Scholar
Sheets, P. D. 1984 The Prehistory of El Salvador: An Interpretative Summary. In The Archaeology of Lower Central America, edited by F. W. Lange and D. Z. Stone, pp. 85112. Academic Press, New York.Google Scholar
Shook, E. M. 1965 Archaeological Survey of the Pacific Coast of Guatemala. In Archaeology of Southern Mesoamerica, edited by G. R. Willey, pp. 180194. Handbook of Middle American Indians, vol. 2, R. Wauchope, general editor. University of Texas Press, Austin.Google Scholar
Spinoza, E. D., and Means, J. L. 1986 Progress Report on Experimental Evaluation of a Nuclear Waste Glass Corrosion Model. Advances in Ceramics 20:531539.Google Scholar
Stevenson, C. M., Carpenter, J., and Scheetz, B. E. 1989 Obsidian Dating: Recent Advances in the Experimental Determination and Application of Hydration Rates. Archaeometry 31:193206.Google Scholar
Strachan, D. M. 1984 Effect of Flow Rate on the Leaching of Nuclear Waste Glass. Advances in Ceramics 8:1218.Google Scholar
Tremaine, K. J. 1989 Obsidian as a Time Keeper: An Investigation in Absolute and Relative Dating. Unpublished Master’s thesis, Cultural Resource Management Program, Sonoma State University, Rohnert Park, California.Google Scholar
Tremaine, K. J. 1991 Soil Temperature and Relative Humidity Investigation as Relevant to Obsidian Hydration Studies. In Archaeological Evaluation of CA-MNO-2456, -2488, and -564, Near Bridgeport, Mono County, California, by D. A. Fredrickson, pp. 267283. Ms. on file, Northwest Information Center of the California Archaeological Inventory, Sonoma State University, Rohnert Park, California.Google Scholar
Tremaine, K. J., and Fredrickson, D. A. 1988 Induced Obsidian Hydration Experiments: Investigations in Relative Dating. In Materials Issues in Art and Archaeology, edited by E. V. Sayre, P. Vandiver, J. Druzik, and C. Stevenson, pp. 271278. Materials Research Society Symposium Proceedings 123. Materials Research Society, Pittsburgh.Google Scholar
Trembour, F. W. 1983 Appendix 10-A. Obsidian Hydration Study of Prismatic Blade Fragments from the Cambio Site. In Archeology and Volcanism in Central America: The Zapotitdn Valley of El Salvador, edited by P. D. Sheets, pp. 224226. University of Texas Press, Austin.Google Scholar
Umeki, H. , Suzuki, A., and Kiyose, R. 1986 A Leach Model for Safety Assessment. Advances in Ceramics 20:523529.Google Scholar
Viel, R. 1983 Evolución de la cerámica en Copán. Resultados preliminares. In Introducción a la arqueología de Copán, Honduras, tomo 1, edited by C. Baudez, pp. 471549. Secretaria de Estado en el Despacho de Cultura y Turismo, Tegucigalpa.Google Scholar
Webster, D. , and Freter, A. 1990a Settlement History and the Classic Collapse at Copan: A Redefined Chronological Perspective. Latin American Antiquity 1:6685.Google Scholar
Webster, D. , and Freter, A. 1990b The Demography of Late Classic Copan. In Precolumbian Population History in the Maya Lowlands, edited by T. P. Culbert and D. S. Rice, pp. 3761. University of New Mexico Press, Albuquerque.Google Scholar
Webster, D. , and Gonlin, N. 1988 Household Remains of the Humblest Maya. Journal of Field Archaeology 15:169190.Google Scholar
Westik, J. H., and Peters, R. D. 1981 Time and Temperature Dependence of the Leaching of a Simulated High-Level Waste Glass. In Scientific Basis for Nuclear Waste Management, vol. 3, edited by J. G. Moore, pp. 355362. Plenum Press, New York.Google Scholar
White, A. F. 1983 Surface Chemistry and Dissolution Kinetics of Glassy Rocks at 25°C. Geochimica et Cosmochimica Acta 47:805815.Google Scholar
White, A. F., and Claassen, H. C. 1979 Dissolution Kinetics of Silicate Rocks—Application to Solute Modeling. American Chemical Society Symposium Proceedings 93:447473. Washington, D.C.Google Scholar
White, G. 1984 The Archaeology of LAK-510, Near Lower Lake, Lake County, California. Ms. on file, Northwest Information Center of the California Archaeological Inventory, Sonoma State University, Rohnert Park, California.Google Scholar
White, W. B. 1986 Dissolution Mechanisms of Nuclear Waste Glasses: A Critical Review. Advances in Ceramics 20:431442.Google Scholar
Wicks, G. G., Mosley, W. C., Whitkop, P. G., and Saturday, K. A. 1982 Durability of Simulated Waste Glass-Effects of Pressure and Formation of Surface Layers. Journal of Non-Crystalline Solids 49:413428.Google Scholar
Wolfman, D. 1990 Mesoamerican Chronology and Archaeomagnetic Dating, A.D. 1–1200. In Archaeomagnetic Dating, edited by J. L. Eighmy and R. S. Sternberg, pp. 261308. University of Arizona Press, Tucson.Google Scholar