Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-19T15:24:49.425Z Has data issue: false hasContentIssue false

Distribution and habitat preference of protected reindeer lichen species (Cladonia arbuscula, C. mitis and C. rangiferina) in the Balaton Uplands (Hungary)

Published online by Cambridge University Press:  26 May 2021

Mónika Sinigla
Affiliation:
Bakony Museum of the Hungarian Natural History Museum, H–8420 Zirc, Rákóczi tér 3–5, Hungary
Erzsébet Szurdoki
Affiliation:
Department of Botany, Hungarian Natural History Museum, H–1431 Budapest, Pf. 137, Hungary Department of Natural Sciences, Faculty of Primary and Pre-School Education, Eötvös Loránd University, H-1126 Budapest, Kiss János altábornagy u. 40, Hungary
László Lőkös
Affiliation:
Department of Botany, Hungarian Natural History Museum, H–1431 Budapest, Pf. 137, Hungary
Dénes Bartha
Affiliation:
Institute of Botany and Nature Conservation, University of Sopron, H–9400 Sopron, Bajcsy-Zsilinszky u. 4, Hungary
István Galambos
Affiliation:
H–8420 Zirc, Alkotmány u. 33/A, Hungary
András Bidló
Affiliation:
Institute of Environmental and Earth Sciences, University of Sopron, H–9400 Sopron, Bajcsy-Zsilinszky u. 4, Hungary
Edit Farkas*
Affiliation:
Institute of Ecology and Botany, Centre for Ecological Research, H–2163 Vácrátót, Alkotmány u. 2–4, Hungary
*
Author for correspondence: Edit Farkas. E-mail: farkas.edit@ecolres.hu

Abstract

The maintenance of protected lichen species and their biodiversity in general depends on good management practices based on their distribution and habitat preferences. To date, 10 of the 17 protected lichen species of Hungary have been recorded in the Bakony Mts including the Balaton Uplands region. Habitat preferences of three protected Cladonia species (C. arbuscula, C. mitis and C. rangiferina) growing on underlying rocks of red sandstone, basalt, Pannonian sandstone and gravel were investigated by detailed sampling. We recorded aspect, underlying rock type, soil depth, pH and CaCO3 content, habitat type (as defined by the General National Habitat Classification System Á-NÉR), all species of lichen, bryophyte and vascular plants as well as percentage cover of exposed rock, total bryophytes, lichens, vascular plants and canopy, degree of disturbance and animal impacts. Sporadic populations of these species mostly exist at the top of hills and mountains in open acidofrequent oak forests, but they may occur in other habitats, such as closed acidofrequent oak forests, slope steppes on stony soils, siliceous open rocky grasslands, open sand steppes, wet and mesic pioneer scrub and dry Calluna heaths. Cladonia rangiferina was found to grow beneath higher canopy cover than either C. arbuscula or C. mitis in the Balaton Uplands. Furthermore, there were significant differences in canopy cover between occupied and unoccupied quadrats in the case of all three species. Cladonia rangiferina is a good indicator species of natural habitats in Hungary due to its restricted distribution and low ecological tolerance. These results may lead to the adoption of effective conservation methods (e.g. game exclusion, artificial dispersal) in the future.

Type
Standard Papers
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahti, T (1961) Taxonomic studies on reindeer lichens. Annales Botanici Societatis Zoologicae-Botanicae Fennicae ‘Vanamo’ 32, 1160.Google Scholar
Ahti, T (2000) Cladoniaceae. Flora Neotropica 78, 1362.Google Scholar
Ahti, T and DePriest, PT (2001) New combinations of Cladina epithets in Cladonia (Ascomycotina: Cladoniaceae). Mycotaxon 78, 499502.Google Scholar
Ahti, T and Oksanen, J (1990) Epigeic lichen communities of taiga and tundra regions. Vegetatio 86, 3970.CrossRefGoogle Scholar
Ahti, T, Stenroos, S and Moberg, R (eds) (2013) Nordic Lichen Flora. Volume 5: Cladoniaceae. Uppsala: Museum of Evolution, Uppsala University on behalf of Nordic Lichen Society.Google Scholar
Annex of EEC Habitat Directive (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. [WWW resource] URL https://eur-lex.europa.eu/legal-ontent/EN/TXT/HTML/?uri=CELEX:31992L0043&from=EN [Accessed 10 June 2020].Google Scholar
Arup, U, Ekman, S, Lindblom, L and Mattsson, J-E (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25, 6171.CrossRefGoogle Scholar
Aszalósné-Balogh, R, Matus, G, Lőkös, L, Varga, N and Farkas, E (2020) Lichen-forming fungi Cladonia mitis Sandst. (Cladoniaceae). Studia Botanica Hungarica 51, 7880.Google Scholar
Athukorala, SNP, Doering, J and Piercey-Normore, D (2015) Morphological and genetic polymorphism in two North American reindeer lichens: Cladonia arbuscula s. l. and C. rangiferina. Ceylon Journal of Science (Biological Sciences) 44, 5565.CrossRefGoogle Scholar
Athukorala, SNP, Pino-Bodas, R, Stenroos, S, Ahti, T and Piercey-Normore, MD (2016) Phylogenetic relationships among reindeer lichens of North America. Lichenologist 48, 209227.CrossRefGoogle Scholar
Boertje, RD (1990) Diet quality and intake requirements of adult female caribou of the Denali herd, Alaska. Journal of Applied Ecology 27, 420434.CrossRefGoogle Scholar
Borhidi, A (1984) Role of mapping the flora of Europe in nature conservation. Norrlinia 2, 8798.Google Scholar
Bültmann, H (2006) Erdflechten in komplexen Dünenlandschaften Nordjütlands auf unterschiedlichen Betrachtungsebenen. In Bültmann, H, Fartmann, H and Hasse, T (eds), Trockenrasen auf Unterschiedlichen Betrachtungsebenen. Münster: Arbeiten aus dem Institut für Landschaftsökologie, pp. 114.Google Scholar
Burton, P, Bergeron, Y, Bogdanski, BEC, Juday, GP, Kuuluvainen, T, McAfee, BJ, Ogden, A, Teplyakov, VK, Alfaro, RI, Francis, DA, et al. (2010) Sustainability of boreal forests and forestry in a changing environment. In Mery, G, Katlia, P, Galloway, G, Alfaro, TI, Kanninen, M, Lobovkov, M and Varjo, J (eds), Forests and Society – Responding to Global Drivers of Change. Vantaa, Finland: International Union of Forest Research Organizations, pp. 247282.Google Scholar
CABI (2020) The Index Fungorum. [WWW resource] URL http://www.indexfungorum.org. [Accessed 15 January 2020].Google Scholar
Carbonero, E, Montai, VA, Woranovicz-Barreira, M, Gorina, PAJ and Iacomini, M (2002) Polysaccharides of lichenized fungi of three Cladina spp.: significance as chemotypes. Phytochemistry 61, 681686.CrossRefGoogle ScholarPubMed
Crittenden, PD (2000) Aspects of the ecology of mat-forming lichens. Rangifer 20, 127139.CrossRefGoogle Scholar
Dingová Košuthová, A and Šibík, J (2013) Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians. Ecological Indicators 34, 246259.CrossRefGoogle Scholar
Dingová Košuthová, A, Svitková, I, Pišút, I, Senko, D and Valachovic, M (2013) The impact of forest management on changes in composition of terricolous lichens in dry acidophilous Scots pine forests. Lichenologist 45, 413425.CrossRefGoogle Scholar
Dövényi, Z (ed.) (2010) Magyarország kistájainak katasztere. Budapest: MTA Földrajztudományi Kutatóintézet.Google Scholar
Fabiszewski, J and Szczepańska, K (2010) Ecological indicator values of some lichen species noted in Poland. Acta Societatis Botanicorum Poloniae 79, 305313.CrossRefGoogle Scholar
Farkas, E, Lőkös, L and Molnár, K (2012) Legally protected species of lichen-forming fungi in Hungary. In Lipnicki, L (ed.), Lichen Protection – Protected Lichen Species. Gorzów Wielkopolski: Sonar Literacki, pp. 3542.Google Scholar
Frisvoll, AA and Presto, T (1997) Spruce forest bryophytes in central Norway and their relationship to environmental factors including modern forestry. Ecography 20, 318.CrossRefGoogle Scholar
Futó, J (2005) A Káli-medence. A Balaton-felvidék természeti értékei V. Veszprém: Balatonfelvidéki Nemzeti Park Igazgatóság.Google Scholar
GBIF (2020) The Global Biodiversity Information Facility. [WWW resource] URL https://www.gbif.org/what-is-gbif [Accessed 28 September 2020].Google Scholar
Glime, JM and Iwatsuki, Z (1990) Niche characteristics of Cladonia lichens associated with geothermal vents in Japan. Ecological Research 5, 131141.CrossRefGoogle Scholar
Grolle, R and Long, DG (2000) An annotated check-list of the Hepaticae and Anthocerotae of Europe and Macaronesia. Journal of Bryology 22, 103140.CrossRefGoogle Scholar
Heinken, T (1999) Dispersal patterns of terricolous lichens by thallus fragments. Lichenologist 31, 603612.CrossRefGoogle Scholar
Helle, T, Aspi, J and Tarvainen, L (1983) The growth rate of Cladonia rangiferina and C. mitis in relation to forest characteristics in northeastern Finland. Rangifer 3(2), 25.CrossRefGoogle Scholar
Hill, MO, Bell, N, Bruggeman-Nannenga, MA, Brugués, MS, Cano, J, Enroth, J, Flatberg, KI, Frahm, J-P, Gallego, MT, Garilleti, R, et al. (2006) An annotated checklist of the mosses of Europe and Macaronesia. Journal of Bryology 28, 198267.CrossRefGoogle Scholar
Johansson, P (2006) Effects of habitat conditions and disturbance on lichen diversity. Studies on lichen communities in nemoral, boreal and grassland ecosystems. Ph.D. thesis, Swedish University of Agricultural Sciences Uppsala.Google Scholar
Kershaw, KA (1977) Studies on lichen-dominated systems. XX. An examination of some aspects of the northern boreal lichen woodlands in Canada. Canadian Journal of Botany 55, 393410.CrossRefGoogle Scholar
Király, G (ed.) (2009) Új magyar füvészkönyv. Magyarország hajtásos növényei. Jósvafő: Aggteleki Nemzeti Park Igazgatóság.Google Scholar
Kiss, T (1985) The life-strategy system of lichens – a proposal. Abstracta Botanica 9, 5966.Google Scholar
Landolt, E, Bäumler, B, Erhardt, A, Hegg, O, Klötzli, F, Lämmler, W, Nobis, M, Rudmann-Maurer, K, Schweingruber, FH, Theurillat, J-P, et al. (2010) Flora indicativa: Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. (Ecological Indicator Values and Biological Attributes of the Flora of Switzerland and the Alps). Bern, Stuttgart, Vienna: Conservatoire et Jardin Botaniques de la Ville de Genève and Haupt Verlag.Google Scholar
Larson, DW (1987) The absorption and release of water by lichens. Bibliotheca Lichenologica 25, 351360.Google Scholar
Lesica, P and Shelley, JS (1992) Effects of cryptogamic soil crust on the population dynamics of Arabis fecunda (Brassicaceae). American Midland Naturalist 128, 5360.CrossRefGoogle Scholar
Lőkös, L and Tóth, E (1997) Red list of lichens of Hungary. In Tóth, E and Horváth, R (eds), Proceedings of the ‘Research Conservation, Management’ Conference. Aggtelek, Hungary, 1–5 May 1996, Volume 1. Aggtelek: Aggtelek National Park Directorate, pp. 337343.Google Scholar
Lőkös, L and Verseghy, PK (2001) The lichen flora of the Kiskunság National Park and the southern part of the Danube-Tisza Interfluve. In Lőkös, L and Rajczy, M (eds), The Flora of the Kiskunság National Park. Vol. 2, Cryptogams. Budapest: Magyar Természettudományi Múzeum, pp. 299362.Google Scholar
Mattick, F (1932) Bodenreaktion und Flechtenverbreitung. Beihefte zum Botanischen Centralblatt 49, 241271.Google Scholar
McEvoy, M, Solhaug, KA and Gauslaa, Y (2007) Solar radiation screening in usnic acid-containing cortices of the lichen Nephroma arcticum. Symbiosis 43, 143150.Google Scholar
MÉTA (2019) Vegetation heritage of Hungary. Distribution maps of habitat types. [WWW resource] URL https://www.novenyzetiterkep.hu/english/node/74 [Accessed 10 June 2020].Google Scholar
Miège, D, Goward, T, Waterhouse, M and Armleder, H (2001) Impact of partial cutting on lichen diversity in lodgepole pine forests on the Chilcotin Plateau in British Columbia. Working Paper 55. Victoria: British Columbia Ministry of Forests Research Branch, Government of British Columbia.Google Scholar
Miller, DR (1976) Biology of the Kaminuriak population of barren-ground caribou. Part 3: Taiga winter range relationships and diet. Canadian Wildlife Service Report Series No. 36. Ottawa: Environment Canada Wildlife Service.Google Scholar
Myllys, L, Stenroos, S, Thell, A and Ahti, T (2003) Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Molecular Phylogenetics and Evolution 27, 5869.CrossRefGoogle Scholar
Nguyen, K-H, Chollet-Krugler, M, Gouault, N and Tomasi, S (2013) UV-protectant metabolites from lichens and their symbiotic partners. Natural Product Reports 30, 14901508.CrossRefGoogle ScholarPubMed
Niklfeld, H (1971) Bericht über die Kartierung der Flora Mitteleuropa. Taxon 20, 545571.CrossRefGoogle Scholar
Nybakken, L and Julkunen-Tiitto, R (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38, 477485.CrossRefGoogle Scholar
Nybakken, L, Solhaug, KA, Bilger, W and Gauslaa, Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140, 211216.CrossRefGoogle ScholarPubMed
Oksanen, J (1986) Succession, dominance and diversity in lichen-rich pine forest vegetation in Finland. Ecography 9, 261266.CrossRefGoogle Scholar
Piercey-Normore, MD, Ahti, T and Goward, T (2010) Phylogenetic and haplotype analyses of four segregates within Cladonia arbuscula s. l. Botany 88, 397408.CrossRefGoogle Scholar
QGIS.org (2020) QGIS Geographic Information System. Open Source Geospatial Foundation Project. [WWW resource] URL http://qgis.org [Accessed 10 June 2020].Google Scholar
R Core Team (2019) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [WWW resource] URL http://www.R-project.org/.Google Scholar
Roturier, S, Bäcklund, S, Sundén, M and Bergsten, U (2007) Influence of ground substrate on establishment of reindeer lichen after artificial dispersal. Silva Fennica 41, 269280.CrossRefGoogle Scholar
Ruoss, E (1987) Chemotaxonomische und morphologische Untersuchungen an den Rentierflechten Cladonia arbuscula und C. mitis. Botanica Helvetica 97, 239263.Google Scholar
Rypáček, V (1936) Vliv koncentrace vodikovych ionatu na nektere druhy rodu Cladonia. (The influence of the hydrogen-ions concentration on some species of the genus Cladonia). Věstník Královské České Společnosti Nauk. Třída mathematicko-přírodovědecká 2(6), 118.Google Scholar
Sinigla, M, Lőkös, L and Farkas, E (2019) Védett zuzmófajok elterjedésének és élőhelyigényének előzetes vizsgálata a Bakonyban. (Preliminary investigations on the distribution and habitat preference of protected lichen species in the Bakony Mts (Hungary)). Folia Musei Historico-Naturalis Bakonyiensis 36, 720.Google Scholar
Solhaug, KA, Gauslaa, Y, Nybakken, L and Bilger, W (2003) UV-induction of sun-screening pigments in lichens. New Phytologist 158, 91100.CrossRefGoogle Scholar
StatSoft (2019) Statistica 13.6. Budapest: StatSoft Hungary. [WWW resource] URL http://www.statsoft.hu [Accessed 10 June 2020].Google Scholar
Stenroos, S, Hyvönen, J, Myllys, L, Thell, A and Ahti, T (2002) Phylogeny of the genus Cladonia s. lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics 18, 237278.CrossRefGoogle Scholar
Tilk, M, Ots, K and Tullus, T (2018) Effect of environmental factors on the composition of terrestrial bryophyte and lichen species in Scots pine forests on fixed sand dunes. Forest Systems 27, e015.CrossRefGoogle Scholar
Várallyay, Gy (1993) Soils in the region between the rivers Danube and Tisza (Hungary). In Szujkóné-Lacza, J and Kováts, D (eds), The Flora of the Kiskunság National Park. Vol. 1. The Flowering Plants. Budapest: Magyar Természettudományi Múzeum, pp. 2142.Google Scholar
Verseghy, K (1994) Magyarország zuzmóflórájának kézikönyve. Budapest: Magyar Természettudományi Múzeum.Google Scholar
Waterhouse, MJ, Armleder, HM and Nemec, AFL (2011) Terrestrial lichen response to partial cutting in lodgepole pine forests on caribou winter range in west-central British Columbia. Rangifer 19, 119134.CrossRefGoogle Scholar
Webb, ET (1998) Survival, persistence, and regeneration of the reindeer lichen, Cladina stellaris, C. rangiferina and C. mitis following clearcut logging and forest fire in northwestern Ontario. Rangifer 18, 4147.CrossRefGoogle Scholar
Zar, JH (1999) Biostatistical Analysis. 4th edition. Upper Saddle River, New Jersey: Prentice Hall.Google Scholar
Zraik, M, Booth, T and Piercey-Normore, MD (2018) Relationship between lichen species composition, secondary metabolites and soil pH, organic matter, and grain characteristics in Manitoba. Botany 96, 267279.CrossRefGoogle Scholar
Supplementary material: File

Sinigla et al. supplementary material

Supplementary Material

Download Sinigla et al. supplementary material(File)
File 499.7 KB