Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T19:42:03.320Z Has data issue: false hasContentIssue false

How to minimize the sampling effort for obtaining reliable estimates of diel and annual CO2 budgets in lichens

Published online by Cambridge University Press:  26 November 2009

Maaike Y. BADER
Affiliation:
Functional Ecology of Plants, Department of Biology and Environmental Sciences, University of Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany. Email: maaike.bader@uni-oldenburg.de
Gerhard ZOTZ
Affiliation:
Functional Ecology of Plants, Department of Biology and Environmental Sciences, University of Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany. Email: maaike.bader@uni-oldenburg.de
Otto L. LANGE
Affiliation:
Department of Botany II, Julius-von-Sachs-Institute for Biosciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany.

Abstract

Estimating carbon budgets for poikilohydric organisms, such as lichens and bryophytes, requires methods other than those for homoiohydric plants due to a strong dependency of carbon gain on fluctuating hydration. This paper provides guidance with respect to optimal sampling strategies for estimating annual carbon budgets of lichens and bryophytes, based on a one-year dataset of half-hourly CO2-exchange readings on the epilithic placodioid lichen Lecanora muralis (syn. Protoparmeliopsis muralis) and tests the effects of reduced sampling frequencies and different temporal sampling schemes on carbon budget estimates. Both fine-scale sampling (measurements within a day) and large-scale sampling (selection of days within a year) are addressed.

Lowering the sampling frequency within a day caused large deviations for 24-h (diel) budget estimates. Averaged over a larger number of days, these errors did not necessarily cause a large deviation in the annual budget estimate. However, the occurrence of extreme deviations in diel budgets could strongly offset the annual budget estimate. To avoid this problem, frequent sampling (c. every 1·5 hours) is necessary for estimating annual budgets. For estimating diel budgets and patterns a more frequent sampling (every c. 0·5 hours, balancing data resolution and disturbance) is often needed.

Sampling fewer than 365 days in a given year inevitably caused estimates to deviate from the ‘true’ carbon budget, i.e. the annual budget based on half-hourly measurements during 365 days. Accuracy increased with total sample frequency, and blocking days caused larger deviations than sampling randomly or regularly spaced single days. Restricting sampling to only one season led to strongly biased estimates. The sampling effort required for a reliable estimate of the annual carbon balance of lichens based on simple extrapolations of diel carbon budgets is impracticably large. For example, a relatively large sample of 52 random days yielded an estimate within 25% of the true annual budget with only 60% certainty. Supporting approaches are therefore suggested, in particular extrapolating diel budgets using ‘weather response types’, possibly aided by diel activity patterns from chlorophyll fluorescence, or modelling CO2 exchange as a function of climatic conditions.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asplund, J. & Gauslaa, Y. (2008) Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia 155: 9399.CrossRefGoogle ScholarPubMed
Bruns-Strenge, S. & Lange, O. L. (1992) Photosynthetische Primärproduktion der Flechte Cladonia portentosa an einem Dünenstandort auf der Nordseeinsel Baltrum. III. Anwendung des Photosynthesemodells zur Simulation von Tagesläufen des CO2-Gaswechsels und zur Abschätzung der Jahresproduktion. Flora 186: 127140.CrossRefGoogle Scholar
Coxson, D. S. (1991) Impedance measurement of thallus moisture-content in lichens. Lichenologist 23: 7784.CrossRefGoogle Scholar
Coxson, D. S., McIntyre, D. D. & Vogel, H. J. (1992) Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest (Guadeloupe, French West Indies). Biotropica 24: 121133.CrossRefGoogle Scholar
del Prado, R. & Sancho, L. G. (2007) Dew as a key factor for the distribution pattern of the lichen species Teloschistes lacunosus in the Tabernas Desert (Spain). Flora 202: 417428.CrossRefGoogle Scholar
DeLucia, E. H., Turnbull, M. H., Walcroft, A. S., Griffin, K. L., Tissue, D. T., Glenny, D., McSeveny, T. M. & Whitehead, D. (2003) The contribution of bryophytes to the carbon exchange for a temperature rainforest. Global Change Biology 9: 11581170.CrossRefGoogle Scholar
den Herder, M., Kytoviita, M. M. & Niemela, P. (2003) Growth of reindeer lichens and effects of reindeer grazing on ground cover vegetation in a Scots pine forest and a subarctic heathland in Finnish Lapland. Ecography 26: 312.CrossRefGoogle Scholar
Flanagan, L. B., Wever, L. A. & Carlson, P. J. (2002) Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology 8: 599615.CrossRefGoogle Scholar
Gauslaa, Y. (2006) Trade-off between reproduction and growth in the foliose old forest lichen Lobaria pulmonaria. Basic and Applied Ecology 7: 455460.CrossRefGoogle Scholar
Gauslaa, Y., Lie, M., Solhaug, K. & Ohlson, M. (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147: 406416.CrossRefGoogle ScholarPubMed
Green, T. G. A., Schroeter, B. & Sancho, L. G. (2007) Plant life in Antarctica. In Handbook of Functional Plant Ecology, 2 edn (Pugnaire, F. I. & Valladares, F., eds): 389433. Boca Raton, London, New York: CRC Press.CrossRefGoogle Scholar
Heber, U., Bilger, W., Bligny, R. & Lange, O. L. (2000) Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions. Planta 211: 770780.CrossRefGoogle Scholar
Kärenlampi, L., Tammisola, J. & Hurme, H. (1975) Weight increase of some lichens as related to carbon dioxide exchange and thallus moisture. In Fennoscandian Tundra Ecosystems. I. Plants and Microorganisms (Wiegolaski, F. E., ed.): 135137. New York: Springer.CrossRefGoogle Scholar
Lange, O. L. (2000) Photosynthetic performance of a gelatinous lichen under temperate habitat conditions: long-term monitoring of CO2 exchange of Collema cristatum. Bibliotheca Lichenologica 75: 307332.Google Scholar
Lange, O. L. (2002) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation - I. Dependence of photosynthesis on water content, light, temperature, and CO2 concentration from laboratory measurements. Flora 197: 233249.CrossRefGoogle Scholar
Lange, O. L. (2003 a) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation - II. Diel and seasonal patterns of net photosynthesis and respiration. Flora 198: 5570.Google Scholar
Lange, O. L. (2003 b) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation - III. Diel, seasonal, and annual carbon budgets. Flora 198: 277292.Google Scholar
Lange, O. L., Green, T. G. A., Meyer, A. & Zellner, H. (2007) Water relations and carbon dioxide exchange of epiphytic lichens in the Namib fog desert. Flora 202: 479487.CrossRefGoogle Scholar
Lange, O. L., Büdel, B., Meyer, A., Zellner, H. & Zotz, G. (2004) Lichen carbon gain under tropical conditions: water relations and CO2 exchange of Lobariaceae species of a lower montane rainforest in Panama. Lichenologist 36: 329342.CrossRefGoogle Scholar
Lange, O. L., Büdel, B., Zellner, H., Zotz, G. & Meyer, A. (1994) Field measurements of water relations and CO2 exchange of the tropical, cyanobacterial basidiolichen Dictyonema glabratum in a Panamanian rainforest. Botanica Acta 107: 279290.CrossRefGoogle Scholar
Lange, O. L. & Green, T. G. A. (2003) Photosynthetic performance of a foliose lichen of biological soil-crust communities: long-term monitoring of the CO2 exchange of Cladonia convoluta under temperate habitat conditions. Bibliotheca Lichenologica 86: 257280.Google Scholar
Lange, O. L. & Green, T. G. A. (2005) Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia 142: 1119.CrossRefGoogle ScholarPubMed
Lange, O. L. & Green, T. G. A. (2008) Diel and seasonal courses of ambient carbon dioxide concentration and their effect on productivity of the epilithic lichen Lecanora muralis in a temperate, suburban habitat. Lichenologist 40: 449462.CrossRefGoogle Scholar
Lange, O. L., Green, T. G. A., Melzer, B., Meyer, A. & Zellner, H. (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201: 268280.CrossRefGoogle Scholar
Lange, O. L., Hahn, S. C., Meyer, A. & Tenhunen, J. D. (1998) Upland tundra in the foothills of the Brooks Range, Alaska, U.S.A.: lichen long-term photosynthetic CO2 uptake and net carbon gain. Arctic and Alpine Research 30: 252261.CrossRefGoogle Scholar
Larcher, W. (2001) Physiological Plant Ecology, 4 edn. Berlin: Springer Verlag.Google Scholar
Leisner, J. M. R., Green, T. G. A. & Lange, O. L. (1997) Photobiont activity of a temperate crustose lichen: long-term chlorophyll fluorescence and CO2 exchange measurements in the field. Symbiosis 23: 165182.Google Scholar
Maxwell, K. & Johnson, G. N. (2000) Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51: 659668.CrossRefGoogle ScholarPubMed
Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton, L. E., Sparks, K. & Huxman, T. E. (2002) Carbon sequestration in a high-elevation, subalpine forest. Global Change Biology 8: 459478.CrossRefGoogle Scholar
Palmqvist, K., Dahlman, L., Jonsson, A. & Nash, T. H. III (2008) The carbon economy of lichens. In Lichen Biology, 2 edn (Nash, T. H. III, ed.): 182215. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Palmqvist, K., Dahlman, L., Valladares, F., Tehler, A., Sancho, L. G. & Mattsson, J. E. (2002) CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia 133: 295306.CrossRefGoogle ScholarPubMed
R Development Core Team (2007) R: A language and environment for statistical computing Vienna, Austria. URL http://www.R-project.org: R Foundation for Statistical Computing.Google Scholar
Reinhardt, K. & Smith, W. K. (2008) Impacts of cloud immersion on microclimate, photosynthesis and water relations of Abies fraseri (Pursh.) Poiret in a temperate mountain cloud forest. Oecologia 158: 229238.CrossRefGoogle Scholar
Richards, P. W. (1984) The ecology of tropical forest bryophytes. In New Manual of Bryology, vol 2 (Schuster, R. M., ed.): 12331270. Nichinan: The Hattori Botanical Laboratory.Google Scholar
Sancho, L. G., Green, T. G. A. & Pintadoa, A. (2007) Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora 202: 667673.CrossRefGoogle Scholar
Schroeter, B., Green, T. G. A., Seppelt, R. D. & Kappen, L. (1992) Monitoring photosynthetic activity of crustose lichens using a PAM-2000 fluorescence system. Oecologia 92: 457462.CrossRefGoogle ScholarPubMed
Skre, O. & Oechel, W. C. (1981) Moss functioning in different taiga ecosystems in interior Alaska. I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns. Oecologia 48: 5059.CrossRefGoogle Scholar
Sundberg, B., Palmqvist, K., Esseen, P. A. & Renhorn, K. E. (1997) Growth and vitality of epiphytic lichens. 2. Modelling of carbon gain using field and laboratory data. Oecologia 109: 1018.CrossRefGoogle Scholar
Suyker, A. E. & Verma, S. B. (2001) Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Global Change Biology 7: 279289.CrossRefGoogle Scholar
Tretiach, M. & Geletti, A. (1997) CO2 exchange of the endolithic lichen Verrucaria baldensis from karst habitats in northern Italy. Oecologia 111: 515522.CrossRefGoogle ScholarPubMed
Weber, B., Scherr, C., Reichenberger, H. & Budel, B. (2007) Fast reactivation by high air humidity and photosynthetic performance of alpine lichens growing endolithically in limestone. Arctic Antarctic and Alpine Research 39: 309317.CrossRefGoogle Scholar
Zotz, G. & Rottenberger, S. (2001) Seasonal changes in diel CO2 exchange of three central european moss species: a one-year field study. Plant Biology 3: 661669.CrossRefGoogle Scholar
Zotz, G. & Schleicher, T. (2003) Growth and survival of the foliose lichen Parmotrema endosulphureum in the lowland tropics of Panama. Ecotropica 9: 3944.Google Scholar
Zotz, G., Schultz, S. & Rottenberger, S. (2003) Are tropical lowlands a marginal habitat for macrolichens? Evidence from a field study with Parmotrema endosulphureum in Panama. Flora 198: 7177.CrossRefGoogle Scholar
Zotz, G. & Winter, K. (1993) Short-term photosynthesis measurements predict leaf carbon balance in tropical rain-forest canopy plants. Planta 191: 409412.CrossRefGoogle Scholar
Zotz, G. & Winter, K. (1994 a) Photosynthesis and carbon gain of the lichen, Leptogium azureum, in a lowland tropical forest. Flora 189: 179186.CrossRefGoogle Scholar
Zotz, G. & Winter, K. (1994 b) Predicting annual carbon balance from leaf nitrogen. Naturwissenschaften 81: 449.CrossRefGoogle Scholar
Zotz, G. & Winter, K. (1996) Diel patterns of CO2 exchange in rainforest canopy plants. In Tropical Forest Plant Ecophysiology (Mulkey, S. S., Chazdon, R. L. & Smith, A. P., eds): 89113. New York: Chapman & Hall.CrossRefGoogle Scholar