Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T22:26:23.722Z Has data issue: false hasContentIssue false

Molecular support for the recognition of the Mycoblastus fucatus group as the new genus Violella (Tephromelataceae, Lecanorales)

Published online by Cambridge University Press:  29 July 2011

Toby SPRIBILLE
Affiliation:
Institute of Plant Sciences, University of Graz, Holteigasse 6, A-8010 Graz, Austria. Email: toby.spribille@uni-graz.at
Bernard GOFFINET
Affiliation:
Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N Eagleville Road, Storrs, CT 06269-3043, USA.
Barbara KLUG
Affiliation:
Institute of Plant Sciences, University of Graz, Holteigasse 6, A-8010 Graz, Austria. Email: toby.spribille@uni-graz.at
Lucia MUGGIA
Affiliation:
Institute of Plant Sciences, University of Graz, Holteigasse 6, A-8010 Graz, Austria. Email: toby.spribille@uni-graz.at
Walter OBERMAYER
Affiliation:
Institute of Plant Sciences, University of Graz, Holteigasse 6, A-8010 Graz, Austria. Email: toby.spribille@uni-graz.at
Helmut MAYRHOFER
Affiliation:
Institute of Plant Sciences, University of Graz, Holteigasse 6, A-8010 Graz, Austria. Email: toby.spribille@uni-graz.at

Abstract

The crustose lichen genus Mycoblastus in the Northern Hemisphere includes eight recognized species sharing large, simple ascospores produced 1–2 per ascus in strongly pigmented biatorine apothecia. The monophyly of Mycoblastus and the relationship of its various species to Tephromelataceae have never been studied in detail. Data from ITS rDNA and the genes coding for translation elongation factor 1-α and DNA replication licensing factor mini-chromosome maintenance complex 7 support the distinctness of Mycoblastus s. str. from the core of the Tephromelataceae, but recover M. fucatus and an undescribed Asian species as strongly supported within the latter group. We propose accommodating these two species in a new genus, Violella, which is characterized by its brownish inner ascospore walls, Fucatus-violet hymenial pigment granules and secondary chemistry, and discuss the position of Violella relative to Calvitimela and Tephromela. We describe the new species Violella wangii T. Sprib. & Goffinet to accommodate a new species with roccellic acid from Bhutan, China, India and the Russian Far East. We also exclude Mycoblastus indicus Awasthi & Agarwal from the genus Mycoblastus and propose for it the new combination Malmidea indica (Awasthi & Agarwal) Hafellner & T. Sprib.

Type
Research Article
Copyright
Copyright © British Lichen Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, M. (2004) Novye taksonomoicheskie kombinatsii dlya letsideoidnykh lishainikov (New taxonomic combinations for lecideoid lichens). Novosti Sistematiki Nizshchikh Rasteniy 37: 188191. [In Russian]Google Scholar
Arup, U., Ekman, S., Grube, M., Mattsson, J.-E. & M., Wedin (2007) The sister group relation of Parmeliaceae (Lecanorales, Ascomycota). Mycologia 99: 4249.Google Scholar
Awasthi, D. D. & Agarwal, M. R. (1968) A new species of Mycoblastus from India. Current Science 37: 8485.Google Scholar
Awasthi, D. D. & Singh, K. P. (1977) Heppsora, a new lichen genus from India. Bryologist 80: 536538.Google Scholar
Coppins, B. J. & James, P. W. (1979) New or interesting British lichens IV. Lichenologist 11: 139179.CrossRefGoogle Scholar
Culberson, C. F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography 72: 113125.CrossRefGoogle ScholarPubMed
Culberson, C. F. & Johnson, A. (1982) Substitution of methyl tert.-butyl ether for diethyl ether in standardized thin-layer chromatographic method for lichen products. Journal of Chromatography 238: 438487.Google Scholar
Diederich, P. (1986) Lichenicolous fungi from the Grand Duchy of Luxembourg and surrounding areas. Lejeunia 119: 126.Google Scholar
Diederich, P. (1996) The lichenicolous Heterobasidiomycetes. Bibliotheca Lichenologica 61: 1198.Google Scholar
Ekman, S., Andersen, H. L. & Wedin, M. (2008) The limitations of ancestral state reconstruction and the evolution of the ascus in the Lecanorales (lichenized Ascomycota). Systematic Biology 57: 141156.Google Scholar
Fryday, A. (2011) New combinations and species in Calvitimela and Tephromela from the southern subpolar region. Lichenologist 43: 225239.Google Scholar
Guindon, S., Dufavard, J. F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307321.CrossRefGoogle ScholarPubMed
Hafellner, J. (1984) Studien in Richtung einer natürlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Beiheft zur Nova Hedwigia 79: 241371.Google Scholar
Hafellner, J. & Türk, R. (2001) Die lichenisierten Pilze Österreichs - eine Checkliste der bisher nachgewiesenen Arten mit Verbreitungsangaben. Stapfia 76: 3167.Google Scholar
Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 9598.Google Scholar
Harris, R. C. (2004) A preliminary list of the lichens of New York. Opuscula Philolichenum 1: 5573.Google Scholar
Haugan, R. & Timdal, E. (1994) Tephromela perlata and T. talayana, with notes on the T. aglaea-complex. Graphis Scripta 6: 1726.Google Scholar
Hertel, H. & Rambold, G. (1985) Lecidea sect. Armeniacae: lecideoide Arten der Flechtengattungen Lecanora und Tephromela (Lecanorales). Botanische Jahrbücher für Systematik 107: 469501.Google Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MrBAYES, Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.Google Scholar
James, P. W. (1971) New or interesting British lichens: 1. Lichenologist 5: 114148.Google Scholar
James, P. W. & Watson, M. F. (2009) Mycoblastus. In The Lichens of Great Britain and Ireland (Smith, C. W.Aptroot, A.Coppins, B. J.Fletcher, A.Gilbert, O. L.James, P. W.Wolseley, P. A., eds.): 615618. London: British Lichen Society.Google Scholar
Kalb, K., Rivas-Plata, E., Lücking, R. & Lumbsch, H. T. (2011) The phylogenetic position of Malmidea, a new genus for the Lecidea piperis- and Lecanora granifera-groups (Lecanorales, Malmideaceae), inferred from nuclear and mitochondrial ribosomal DNA sequences, with special reference to Thai species. Bibliotheca Lichenologica 106: 143168.Google Scholar
Kantvilas, G. (2009) The genus Mycoblastus in the cool temperate Southern Hemisphere, with special reference to Tasmania. Lichenologist 41: 151178.Google Scholar
Kauff, F., & Lutzoni, F. (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138156.Google Scholar
Leighton, W. A. (1879) The Lichen Flora of Great Britain, Ireland and the Channel Islands. 3rd edition. Shrewsbury: printed for the author.Google Scholar
Meyer, B. & Printzen, C. (2000) Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32: 571583.CrossRefGoogle Scholar
Miądłikowska, J., Kauff, F., Hofstetter, V., Fraker, E., Grube, M., Hafellner, J., Reeb, V., Hodkinson, B. P., Kukwa, M., Lücking, R. et al. (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98: 10881103.Google Scholar
Muggia, L., Grube, M. & Tretiach, M. (2008) Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycological Progress 7: 147160.Google Scholar
Müller (Argoviensis), J. (1891) Lichenes Miyoshiani in Japonia a cl. Miyoshi lecti et a cl. professore Yatabe communicati. Nuovo Giornale Botanico Italiano 23: 120131.Google Scholar
Müller (Argoviensis), J. (1894) Conspectus systematicus lichenum Novae Zelandiae, quem elaboravit. Bulletin Herbier Boissier 2: 1114.Google Scholar
Nylander, J. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2007) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581583.CrossRefGoogle Scholar
Olivier, H. (1911) Etude synoptique et géographique de Lécidés de la flore d'Europe. Bulletin de Géographie Botanique 21: 157209.Google Scholar
Page, R. D. M. (1996) Treeview: an application to display phylogenetic trees on personal computers. Computer Application in the Bioscience 12: 357358.Google ScholarPubMed
Poelt, J. & Grube, M. (1993) Beiträge zur Kenntnis der Flechtenflora des Himalaya VI. Die Gattung Tephromela (mit Bemerkungen zum Genus Heppsora). Nova Hedwigia 57: 117.Google Scholar
Posada, D. (2008) jModelTest : phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.Google Scholar
Schauer, T. (1964) Die Flechtengattung Mycoblastus in Mitteleuropa. Nova Hedwigia 8: 301310.Google Scholar
Schmull, M., Hauck, M., Vann, D. R., Johnson, A. H. & Runge, M. (2002) Site factors determining epiphytic lichen distribution in a dieback-affected spruce-fir forest on Whiteface Mountain, New York: stemflow chemistry. Canadian Journal of Botany 80: 11311140.Google Scholar
Singh, K. P. & Sinha, G. P. (2010) Indian Lichens: an Annotated Checklist. Kolkata: Botanical Survey of India, Ministry of Environment and Forests.Google Scholar
Spribille, T., Pérez-Ortega, S., Tønsberg, T. & Schirokauer, D. (2010) Lichens and lichenicolous fungi of the Klondike Gold Rush National Historic Park, Alaska, in a global biodiversity context. Bryologist 113: 439515.Google Scholar
Spribille, T., Klug, B. & Mayrhofer, H. (2011) A phylogenetic analysis of the boreal lichen Mycoblastus sanguinarius (Mycoblastaceae, lichenized Ascomycota) reveals cryptic clades correlated with fatty acid profiles. Molecular Phylogenetics and Evolution 59: 603614.Google Scholar
Stirton, J. (1879) Descriptions of new Scottish lichens. Scottish Naturalist 5: 1617.Google Scholar
Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564577.CrossRefGoogle ScholarPubMed
Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 46734680.Google Scholar
Tønsberg, T. (1992) The sorediate and isidiate, corticolous, crustose lichens in Norway. Sommerfeltia 14: 1331.CrossRefGoogle Scholar
Tønsberg, T. (1993) Additions to the lichen flora of North America. Bryologist 96: 138141.Google Scholar
Vězda, A. (1993) Lichenes Rariores Exsiccati. Fasciculus Septimus (numeris 61–70). Brno: published by the author.Google Scholar
Vobis, G. (1980) Bau und Entwicklung der Flechten-Pycnidien und ihrer Conidien. Bibliotheca Lichenologica 14: 1141, + plates.Google Scholar
Zahlbruckner, A. (1926) Catalogus Lichenum Universalis. Band IV. Leipzig: Borntraeger.Google Scholar