Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T05:50:27.313Z Has data issue: false hasContentIssue false

Two new Aspicilia species from Fennoscandia and Russia

Published online by Cambridge University Press:  16 December 2010

Anders NORDIN
Affiliation:
Museum of Evolution, Botany, Norbyvägen 16, SE-752 36 Uppsala, Sweden. Email: anders.nordin@evolmuseum.uu.se
Björn OWE-LARSSON
Affiliation:
Museum of Evolution, Botany, Norbyvägen 16, SE-752 36 Uppsala, Sweden. Email: anders.nordin@evolmuseum.uu.se
Leif TIBELL
Affiliation:
Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden.

Abstract

Aspicilia fluviatilis and A. granulosa, two arctic and/or (sub)alpine species with elongate ± diverging and ± branching marginal areoles, are described as new and compared with similar species occurring in Fennoscandia. A parsimony analysis based on ITS indicates a close relationship with the mainly coastal A. epiglypta. Aspicilia epiglypta, A. disserpens and A. sublapponica are lectotypified and A. disserpens is reduced to synonymy with A. perradiata. Aspicilia alboradiata and A. circularis are excluded from the Fennoscandian lichen biota. A key to Fennoscandian Aspicilia species with radiating thalli and/or elongate ± diverging and ± branching marginal areoles is also presented.

Type
Research Article
Copyright
Copyright © British Lichen Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arup, U., Ekman, S., Lindblom, L. & Mattsson, J.-E. (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25: 6171.CrossRefGoogle Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle ScholarPubMed
Magnusson, A. H. (1939) Studies in species of Lecanora, mainly the Aspicilia gibbosa group. Kungl. Svenska Vetenskapsakademiens Handlingar, serie 3, 17(5): 1182.Google Scholar
Magnusson, A. H. (1952) Lichens from Torne Lappmark. Arkiv för Botanik 2(2): 45249.Google Scholar
Meyer, B. & Printzen, C. (2000) Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32: 571583.CrossRefGoogle Scholar
Nordin, A., Tibell, L. & Owe-Larsson, B. (2007) A preliminary phylogeny of Aspicilia in relation to morphological and secondary product variation. Bibliotheca Lichenologica 96: 247266.Google Scholar
Nordin, A., Savić, S. & Tibell, L. (2010) Phylogeny and taxonomy of Aspicilia and Megasporaceae. Mycologia 102: 13391349.CrossRefGoogle ScholarPubMed
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Swofford, D. L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0. Sunderland, Massachusetts: Sinuaer Associates.Google Scholar
Tibell, L. (2006) Calicium in the Indian Himalayas. Journal of the Hattori Botanical Laboratory 100: 809852.Google Scholar
White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols and Applications – a Laboratory Manual (Innis, N., Gelfand, D., Sninsky, J. & White, T., eds): 315322. New York: Academic Press.Google Scholar
Zahlbruckner, A. (1928) Die Gattung Lecanora. Report of the scientific results of the Norwegian expedition to Novaya Zemlya 1921, 44: 132.Google Scholar