Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T21:49:27.509Z Has data issue: false hasContentIssue false

F v/F m acclimation to the Mediterranean summer drought in two sympatric Lasallia species from the Iberian mountains

Published online by Cambridge University Press:  10 March 2017

M. VIVAS
Affiliation:
Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de la Frontera, Temuco, Chile; Ecobiosis, Dpto. de Botánica, Facultad de Ciencias Naturales y Oceanografía, Universidad de Concepción, Concepción, Chile; and Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040, Madrid, Spain. Email: meru.vivas@gmail.com
S. PÉREZ-ORTEGA
Affiliation:
Real Jardín Botánico, CSIC, E-28014, Madrid, Spain
A. PINTADO
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040, Madrid, Spain
L. G. SANCHO
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040, Madrid, Spain

Abstract

Photosynthetic performance in lichens can vary throughout the year. We investigate the variation in the PSII quantum efficiency as a proxy for the physiological state of the photosynthetic apparatus in two umbilicate species from the genus Lasallia. Temporal variation in F v/F m in both species was monitored at a field site in Central Spain where both species coexist. Subsequent measurements were carried out in the laboratory after 48 h preconditioning. Both species showed clear variation during the year in PSII performance, with a marked depression in F v/F m during the summer. Lasallia pustulata consistently had higher F v/F m values than L. hispanica. Both species reached higher F v/F m values after 48 h of preconditioning in the laboratory and this recovery was particularly notable in the summer months. F v/F m was highly related to antecedent weather conditions during the two days prior to measurement.

Type
Articles
Copyright
© British Lichen Society, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barták, M., Vráblíková, H. & Hájek, J. (2003) Sensitivity of photosystem 2 of Antarctic lichens to high irradiance stress: fluorometric study of fruticose (Usnea antarctica) and foliose (Umbilicaria decussata) species. Photosynthetica 41: 497504.CrossRefGoogle Scholar
Barták, M., Vráblíková-Cempírková, H., Štepigová, J., Hájek, J., Váczi, P. & Večeřová, K. (2008) Duration of irradiation rather than quantity and frequency of high irradiance inhibits photosynthetic processes in the lichen Lasallia pustulata . Photosynthetica 46: 161169.Google Scholar
Baruffo, L. & Tretiach, M. (2007) Seasonal variation of F o, F m, and F v/F m in an epiphytic population of the lichen Punctelia subrudecta (Nyl.) Krog. Lichenologist 39: 555565.Google Scholar
Bilger, W., Rimke, S., Schreiber, U. & Lange, O. L. (1989) Inhibition of energy-transfer to photosystem II in lichens by dehydration: different properties of reversibility with green and blue-green phycobionts. Journal of Plant Physiology 134: 261268.CrossRefGoogle Scholar
Calatayud, A., Sanz, M. J., Calvo, E., Barreno, E. & del Valle-Tascón, S. (1996) Chlorophyll a fluorescence and chlorophyll content in Parmelia quercina thalli from a polluted region of northern Castellón (Spain). Lichenologist 28: 4965.CrossRefGoogle Scholar
Candotto Carniel, F., Zanelli, D., Bertuzzi, S. & Tretiach, M. (2015) Desiccation tolerance and lichenization: a case study with the aeroterrestrial microalga Trebouxia sp. (Chlorophyta). Planta 242: 113.Google Scholar
Codogno, M. & Sancho, L. G. (1991) Distribution patterns of the lichen family Umbilicariaceae in the W Mediterranean Basin (Iberian Peninsula, S France and Italy). Botanika Chronika 10: 901910.Google Scholar
Davydov, E. A., Peršoh, D. & Rambold, G. (2010) The systematic position of Lasallia caroliniana (Tuck.) Davydov, Peršoh & Rambold comb. nova and considerations on the generic concept of Lasallia (Umbilicariaceae, Ascomycota). Mycological Progress 9: 261266.CrossRefGoogle Scholar
Demmig, B. & Björkman, O. (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of O2 evolution in leaves of higher plants. Planta 171: 171184.Google Scholar
Demmig-Adams, B., Máguas, C., Adams, W. W. III., Meyer, A., Kilian, E. & Lange, O. L. (1990) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180: 400409.Google Scholar
Fox, F. & Weisberg, S. (2011) An R Companion to Applied Regression, 2nd Edition. Thousand Oaks, California: Sage Publications. URL: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion Google Scholar
Gauslaa, Y. & Solhaug, K. A. (1999) High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria – interactions of irradiance, exposure duration and high temperature. Journal of Experimental Botany 50: 697705.Google Scholar
Gauslaa, Y. & Solhaug, K. A. (2000) High-light-intensity damage to the foliose lichen Lobaria pulmonaria within a natural forest: the applicability of chlorophyll fluorescence methods. Lichenologist 32: 271289.Google Scholar
Gauslaa, Y. & Solhaug, K. A. (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria . Oecologia 126: 462471.Google Scholar
Gauslaa, Y., Ohlson, M., Solhaug, K. A., Bilger, W. & Nybakken, L. (2001) Aspect-dependent high-irradiance damage in two transplanted foliose forest lichens, Lobaria pulmonaria and Parmelia sulcata . Canadian Journal of Forest Research 31: 16391649.Google Scholar
Gauslaa, Y., Coxson, D. S. & Solhaug, K. A. (2012) The paradox of higher light tolerance during desiccation in rare old forest cyanolichens than in more widespread co-occurring chloro- and cephalolichens. New Phytologist 195: 812822.CrossRefGoogle ScholarPubMed
Genty, B., Briantais, I. M. & Baker, N. R. (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica and Biophysica Acta 990: 8792.Google Scholar
Green, T. G. A., Schroeter, B., Kappen, L., Seppelt, R. D. & Maseyk, K. (1998) An assessment of the relationship between chlorophyll a fluorescence and CO2 gas exchange from field measurements on a moss and lichen. Planta 206: 611618.Google Scholar
Gulías, J., Flexas, J., Abadía, A. & Medrano, H. (2002) Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, an endemic Balearic species. Tree Physiology 22: 687697.CrossRefGoogle ScholarPubMed
Jensen, M. (2002) Measurement of chlorophyll fluorescence in lichens. In Protocols in Lichenology. Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring. (I. Kranner, R. P. Beckett & A. K. Varma, eds): 135151. Berlin: Springer.Google Scholar
Harrell, F. E. Jr, with contributions from Charles Dupont and many others (2014) Hmisc: Harrell Miscellaneous. R package version 3.14-4. http://CRAN.R-project.org/package=Hmisc Google Scholar
Kranner, I., Beckett, R., Hochman, A. & Nash, T. H. III (2008) Desiccation-tolerance in lichens: a review. Bryologist 111: 576593.Google Scholar
Lange, O. L., Green, T. G. A. & Reichenberger, H. (1999) The response of lichen photosynthesis to external CO2 concentration and its interaction with thallus water-status. Journal of Plant Physiology 154: 157166.Google Scholar
Larsson, P., Večeřová, K., Cempírková, H., Solhaug, K. A. & Gauslaa, Y. (2009) Does UV-B influence biomass growth in lichens deficient in sun-screening pigments? Environmental and Experimental Botany 67: 215221.Google Scholar
Leisner, J. M. R., Green, T. G. A. & Lange, O. L. (1997) Photobiont activity of a temperate crustose lichen: long-term chlorophyll fluorescence and CO2 exchange measurements in the field. Symbiosis 23: 165182.Google Scholar
MacKenzie, T. D. B., MacDonald, T. M., Dubois, L. A. & Campbell, D. A. (2001) Seasonal changes in temperature and light drive acclimation of photosynthetic physiology and macromolecular content in Lobaria pulmonaria . Planta 214: 5766.Google Scholar
MacKenzie, T. D. B., Król, M., Huner, N. P. A. & Campbell, D. A. (2002) Seasonal changes in chlorophyll fluorescence quenching and the induction and capacity of the photoprotective xanthophyll cycle in Lobaria pulmonaria . Canadian Journal of Botany 80: 255261.Google Scholar
Maxwell, K. & Johnson, G. N. (2000) Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51: 659668.CrossRefGoogle ScholarPubMed
Minibayeva, F. & Beckett, R. P. (2001) High rates of extracellular superoxide production in bryophytes and lichens, and an oxidative burst in response to rehydration following desiccation. New Phytologist 152: 333343.CrossRefGoogle Scholar
Niewiadomska, E., Jarowiecka, D. & Czarnota, P. (1998) Effect of different levels of air pollution on photosynthetic activity of some lichens. Acta Societatis Botanicorum Poloniae 67: 259262.Google Scholar
Pellegrini, E., Bertuzzi, S., Candotto Carniel, F., Lorenzini, G., Nali, C. & Tretiach, M. (2014) Ozone tolerance in lichens: a possible explanation from biochemical to physiological level using Flavoparmelia caperata as test organism. Journal of Plant Physiology 171: 15141523.Google Scholar
Pintado, A., Sancho, L. G., Green, T. G. A., Blanquer, J. M. & Lázaro, R. (2005) Functional ecology of the biological soil crust in semiarid SE Spain: sun and shade populations of Diploschistes diacapsis (Ach.) Lumbsch. Lichenologist 37: 425432.Google Scholar
Pirintsos, S. A., Paoli, L., Loppi, S. & Kotzabasis, K. (2011) Photosynthetic performance of lichen transplants as early indicator of climatic stress along an altitudinal gradient in the arid Mediterranean area. Climatic Change 107: 305328.CrossRefGoogle Scholar
Prendergast, J. R., Quinn, R. M., Lawton, J. H., Eversham, B. C. & Gibbons, D. W. (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365: 335337.Google Scholar
Proctor, M. C. F. & Smirnoff, N. (2011) Ecophysiology of photosynthesis in bryophytes: major roles for oxygen photoreduction and non-photochemical quenching? Physiologia Plantarum 141: 130140.Google Scholar
R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/ Google Scholar
Raggio, J., Pintado, A., Vivas, M., Sancho, L. G., Büdel, B., Colesie, C., Weber, B., Schroeter, B., Lázaro, R. & Green, T. G. A. (2014) Continuous chlorophyll fluorescence, gas exchange and microclimate monitoring in a natural soil crust habitat in Tabernas badlands, Almería, Spain: progressing towards a model to understand productivity. Biodiversity and Conservation 23: 18091826.Google Scholar
Sancho, L. G. & Crespo, A. (1989) Lasallia hispanica and related species. Lichenologist 21: 4558.Google Scholar
Sancho, L. G. & Kappen, L. (1989) Photosynthesis and water relations and the role of anatomy in Umbilicaricaeae (Lichenes) from central Spain. Oecologia 81: 473480.Google Scholar
Scheidegger, C., Frey, B. & Schroeter, B. (1997) Cellular water uptake, translocation and PSII activation during rehydration of desiccated Lobaria pulmonaria and Nephroma bellum . Bibliotheca Lichenologica 67: 105117.Google Scholar
Schroeter, B., Kappen, L. & Moldaenke, C. (1991) Continuous in situ recording of the photosynthetic activity of Antarctic lichens – established methods and a new approach. Lichenologist 23: 253265.Google Scholar
Schroeter, B., Olech, M., Kappen, L. & Heitland, W. (1995) Ecophysiological investigations of Usnea antarctica in the maritime Antarctic I. Annual microclimatic conditions and potential primary production. Antarctic Science 7: 251260.CrossRefGoogle Scholar
Scott, M. G. & Larson, D. W. (1986) The effect of winter field conditions on the distribution of two species of Umbilicaria. III. CO2 exchange in thalli exposed to laboratory simulations of winter. New Phytologist 102: 327343.Google Scholar
Sonesson, M., Grimberg, Å., Sveinbjörnsson, B. & Carlsson, B. Å. (2011) Seasonal variation in concentrations of carbohydrates and lipids in two epiphytic lichens with contrasting, snow-depth related distribution on subarctic birch trees. Bryologist 114: 443452.Google Scholar
Speranza, M., Wierzchos, J., De Los Ríos, A., Pérez-Ortega, S., Souza-Egipsy, V. & Ascaso, C. (2012) Towards a more realistic picture of in situ biocide actions: combining physiological and microscopy techniques. Science of the Total Environment 439: 114122.Google Scholar
Tausz, M., González-Rodríguez, Á. M., Wonisch, A., Peters, J., Grill, D., Morales, D. & Jiménez, M. S. (2004) Photostress, photoprotection, and water soluble antioxidants in the canopies of five Canarian laurel forest tree species during a diurnal course in the field. Flora - Morphology, Distribution, Functional Ecology of Plants 199: 110119.Google Scholar
Tretiach, M., Piccotto, M. & Baruffo, L. (2007) Effects of ambient NOx on chlorophyll a fluorescence in transplanted Flavoparmelia caperata . Environmental Science and Technology 41: 29782984.Google Scholar
Tretiach, M., Baruffo, L. & Piccotto, M. (2012) Effects of Mediterranean summer conditions on chlorophyll a fluorescence emission in the epiphytic lichen Flavoparmelia soredians: a field study. Plant Biosystems 146: 171180.Google Scholar
Tretiach, M., Bertuzzi, S., Carniel, F. C. & Virgilio, D. (2013) Seasonal acclimation in the epiphytic lichen Parmelia sulcata is influenced by change in photobiont population density. Oecologia 173: 649663.Google Scholar
Vráblíková, H., McEvoy, M., Solhaug, K. A., Barták, M. & Gauslaa, Y. (2006) Annual variation in photoacclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina . Journal of Photochemistry and Photobiology B: Biology 83: 151162.Google Scholar