Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T11:44:46.507Z Has data issue: false hasContentIssue false

Four new species of Bacidia s.s. (Ramalinaceae, Lecanorales) in the Russian Far East

Published online by Cambridge University Press:  06 December 2018

Julia V. GERASIMOVA
Affiliation:
Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popova St. 2, 197376 St. Petersburg, Russia. Email: jgerasimova.lich@yandex.ru SNSB-BSM, Botanische Staatssammlung München, Menzinger Straße 67, D-80638 München, Germany
Aleksandr K. EZHKIN
Affiliation:
Institute of Sea Geology and Geophysics, Far East Branch of the Russian Academy of Sciences, Nauki St. 1B, 693022 Yuzhno-Sakhalinsk, Russia
Andreas BECK
Affiliation:
SNSB-BSM, Botanische Staatssammlung München, Menzinger Straße 67, D-80638 München, Germany GeoBio-Center, Ludwigs-Maximilians-Universität München, Richard-Wagner-Str. 10, D-80333 München, Germany

Abstract

The molecular phylogeny of Bacidia s.s. in the Russian Far East was investigated using 62 nucleotide sequences from the ITS nrDNA region, 22 of which were newly obtained. Phylogenetic reconstructions employed Bayesian inference and maximum likelihood searches using MrBayes and RAxML. In addition, ITS2 secondary structures added further support using Compensatory Base Changes. As a result of morphological and phylogenetic studies, four new species of Bacidia are described. Bacidia areolata sp. nov. belongs to the suffusa group. It was collected once in Khabarovskiy Krai, the Russian Far East, on the bark of Acer tegmentosum and is closely related to B. suffusa but differs in having a smooth, cracked to areolate thallus and shorter spores. Bacidia elongata sp. nov. is a member of the fraxinea group and is similar to B. fraxinea but differs in having a wide zone of cells with enlarged lumina along the edge of the exciple. In fact, this zone of enlarged cells, in combination with its overall habit, places it morphologically close to B. suffusa, B. millegrana and B. campalea. Bacidia kurilensis sp. nov. is a basal member of the laurocerasi group and closely related to B. biatorina, B. heterochroa, B. laurocerasi and B. salazarensis. However, the combination of a granular thallus, large black apothecia and a green hue in the upper part of the exciple edge as well as in the epihymenium sets it apart from the species mentioned above. Bacidia sachalinensis sp. nov. resolves as a strongly supported member of the polychroa group and is known from a single locality in Sakhalin, the Russian Far East. Its thallus structure and apothecium colour are variable, which is typical for the polychroa group, but it differs from B. polychroa by having shorter spores with fewer septa and a mainly smooth to areolate thallus.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, H. L. & Ekman, S. (2005) Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences. Mycological Research 109: 2130.Google Scholar
Beck, A. & Mayr, C. (2012) Nitrogen and carbon isotope variability in the green-algal lichen Xanthoria parietina and their implications on mycobiont-photobiont interactions. Ecology and Evolution 2: 31323144.Google Scholar
Brotherus, V. P., Okamura, K. & Zahlbruckner, A. (1936) Materialien zu einer Flora der Kryptogamenspflanzen des fernen Ostens. Acta Instituti Botanici Academiae Scientiarum URSS, Serie 2 3: 589596.Google Scholar
Brummitt, R. K. (2001) World Geographical Scheme for Recording Plant Distributions, 2nd edn. Pittsburgh: Hunt Institute for Botanical Documentation, Carnegie Mellon University.Google Scholar
Coleman, A. W. (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics 19: 370375.Google Scholar
Coleman, A. W. (2009) Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution 50: 197203.Google Scholar
Coppins, B. J. & Aptroot, A. (2009) Bacidia De Not. 1846. In Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds):189207. London: British Lichen Society.Google Scholar
Czarnota, P. & Guzow-Krzemińska, B. (2012) ITS rDNA data confirm a delimitation of Bacidina arnoldiana and B. sulphurella and support a description of a new species within the genus Bacidina . Lichenologist 44: 743755.Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.Google Scholar
Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 17921797.Google Scholar
Ekman, S. (1996) The corticolous and lignicolous species of Bacidia and Bacidina in North America. Opera Botanica 127: 1148.Google Scholar
Ekman, S. (2001) Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycological Research 105: 783797.Google Scholar
Ekman, S. & Nordin, A. (1993) The taxonomy of Bacidia fraxinea and its relationship to B. rubella . Annales Botanici Fennici 30: 7782.Google Scholar
Foucard, T. (2001) Svenska Skorplavar och Svampar som Växer på dem. Stockholm: Interpublishing.Google Scholar
Galanina, I. A. (2008) Sinuzii Epifitnykh Lishaynikov v Dubovykh Lesakh yuga Primorskogo Kraya [Synusiae of Epiphytic Lichens in Oak Forests of the Southern Primorskii Krai] . Vladivostok: Dalnauka. [In Russian].Google Scholar
Gerasimova, J. V. (2016) Bacidia absistens (Nyl.) Arnold (Ramalinaceae, Lecanorales) v Rossii: nomenklatura, opisaniye, ekologiya i rasprostraneniye [Bacidia absistens (Nyl.) Arnold (Ramalinaceae, Lecanorales) in Russia: nomenclature, description, ecology, and distribution]. Turczaninowia 19: 8893. [In Russian].Google Scholar
Groner, U. & LaGreca, S. (1997) The ‘Mediterranean’ Ramalina panizzei north of the Alps: morphological, chemical and rDNA sequence data. Lichenologist 29: 441454.Google Scholar
Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.Google Scholar
Hafellner, J. (1984) Studien in Richtung einer naturlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae . Nova Hedwigia 79: 241371.Google Scholar
Harada, H., Okamoto, T. & Yoshimura, I. (2004) A checklist of lichens and lichen-allies of Japan. Lichenology 2: 47165.Google Scholar
Huelsenbeck, J. P. & Rannala, B. (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology 53: 904913.Google Scholar
Inoue, M. (1994) Phytogeography of lecideoid lichens in Japan. Journal of the Hattori Botanical Laboratory 76: 183195.Google Scholar
James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J., et al. (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443: 818822.Google Scholar
Jeon, H.-S., Lökös, L., Han, K.-S., Ryu, J.-A., Kim, J. A., Koh, Y. J. & Hur, J.-S. (2009) Isolation of lichen-forming fungi from Hungarian lichens and their antifungal activity against fungal pathogens of hot pepper anthracnose. Plant Pathology Journal 25: 3846.Google Scholar
Kashiwadani, H. & Inoue, M. (1993) The lichens of Kushiro Marsh, Hokkaido. Memoirs of the National Science Museum Tokyo 26: 5366.Google Scholar
Kashiwadani, H. & Sasaki, K. (1987) Lichens of Mt. Hakkoda, Northern Japan. Memoirs of the National Science Museum Tokyo 20: 6781.Google Scholar
Kuznetsova, E. S., Motiejūnaitė, J., Galanina, I. A. & Yakovchenko, L. S. (2013) Bacidia suffusa and Taeniolella punctata new to the Russian Far East. Graphis Scripta 25: 5155.Google Scholar
Lendemer, J. C., Harris, R. C. & Ladd, D. (2016) The faces of Bacidia schweinitzii: molecular and morphological data reveal three new species including a widespread sorediate morph. Bryologist 119: 143171.Google Scholar
Llop, E. (2007) Lecanorales: Bacidiaceae: Bacidia y Bacidina . Flora Liquenológica Ibérica 3: 149.Google Scholar
Lücking, R. (1992) Foliicolous lichens – a contribution to the knowledge of the lichen flora of Costa Rica, Central America. Beihefte zur Nova Hedwigia 104: 1179.Google Scholar
Lücking, R. (2008) Foliicolous lichenized fungi. Flora Neotropica 103: 1867.Google Scholar
Malme, G. O. A. (1935) Bacidiae itineris Regnelliani primi. Arkiv för Botanik 27A: 140.Google Scholar
Mark, K., Cornejo, C., Keller, C., Flück, D. & Scheidegger, C. (2016) Barcoding lichen-forming fungi using 454 pyrosequencing is challenged by artifactual and biological sequence variation. Genome 59: 685704.Google Scholar
Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C., et al. (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132168.Google Scholar
Müller, J. (1892) Lichenes Yatabeani, in Japonia lecti et a cl. prof. Yatabe missi. Nuovo Giornale Botanico Italiano 24: 189202.Google Scholar
Neshataeva, V. Yu., Chernyagina, O. A., Czernyadjeva, I. V., Himelbrant, D. E., Kuznetsova, E. S. & Kirichenko, V. E. (2004) Korennyye starovozrastnyye yelovyye lesa basseyna reki Yelovka, Tsentral’naya Kamchatka (tsenoticheskiye, briofloristicheskiye i likhenobioticheskiye osobennosti). [Pristine old-growth spruce forests of the Yelovka River basin (Central Kamchatka): the species composition of vascular plants, mosses, and lichens and the community structure features]. In Proceedings of the IV Scientific Conference “Conservation of Biodiversity of Kamchatka and Coastal Waters”, 17–18 November, 2003, Petropavlovsk-Kamchatskiy, Russia, p. 100–124. [In Russian].Google Scholar
Nylander, W. (1890) Lichenes Japoniae. Accedunt Observationibus Lichenes Insulae Labuan. Paris: P. Schmidt.Google Scholar
Nylander, W. (1900) Lichenes Ceylonenses et Additamentum ad Lichenes Japoniae. Acta Societatis Scientiarum Fennicae 26: 133.Google Scholar
Printzen, C. (1995) Die Flechtengattung Biatora in Europa. Bibliotheca Lichenologica 60: 1275.Google Scholar
Printzen, C. (2014) A molecular phylogeny of the lichen genus Biatora including some morphologically similar species. Lichenologist 46: 441453.Google Scholar
Rambaut, A. (2009) FigTree v1.3.1. Available at: http://tree.bio.ed.ac.uk/software/figtree/ Google Scholar
Reese Næsborg, R., Ekman, S. & Tibell, L. (2007) Molecular phylogeny of the genus Lecania (Ramalinaceae, lichenized Ascomycota). Mycological Research 111: 581591.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.Google Scholar
Santesson, R. (1952) Foliicolous lichens I. A revision of the taxonomy of the obligately foliicolous, lichenized fungi. Symbolae Botanicae Upsalienses 12: 1590.Google Scholar
Schmull, M., Miadlikowska, J., Pelzer, M., Stocker-Wörgötter, E., Hofstetter, V., Fraker, E., Hodkinson, B. P., Reeb, V., Kukwa, M., Lumbsch, H. T., et al. (2011) Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia 103: 9831003.Google Scholar
Sérusiaux, E. (1993) New taxa of foliicolous lichens from western Europe and Macaronesia. Nordic Journal of Botany 13: 447461.Google Scholar
Sérusiaux, E., van den Boom, P. P. G., Brand, M. A., Coppins, B. J. & Magain, N. (2012) Lecania falcata, a new species from Spain, the Canary Islands and the Azores, close to Lecania chlorotiza . Lichenologist 44: 577590.Google Scholar
Skirina, I. F. (1995) Lishayniki Sikhote-Alinskogo Biosfernogo Rayona. [Lichens of Sikhote-Alin Biosphere Area] Vladivostok: Dalnauka [In Russian].Google Scholar
Skirina, I. F. (2015) Spisok lishaynikov Sikhote-Alinskogo zapovednika [List of lichens of the Sikhote-Alin Reserve]. Biodiversity and Environment of Far East Reserves 3: 10102 [In Russian].Google Scholar
Skirina, I. F. & Moiseyevskaya, E. B. (2004) Lishayniki Primorskogo Kraya: Annotirovannyy Bibliograficheskiy Ukazatel’ Literatury (1912–2004). [Lichens of Primorskiy Krai: Annotated Bibliographical List of Literature (1912–2004)] . Vladivostok: Dalnauka [In Russian].Google Scholar
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 13121313.Google Scholar
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology 57: 758771.Google Scholar
Swofford, D. L. (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). [Version 4]. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Tchabanenko, S. I. (2002) Konspekt Flory Lishaynikov yuga Rossiyskogo dal’nego Vostoka [Conspectus of Lichen Flora of the Southern Russian Far East] . Vladivostok: Dalnauka. [In Russian].Google Scholar
Tuckerman, E. (1864) Observations on North American and other lichens. Proceedings of the American Academy of Arts and Sciences 6: 263287.Google Scholar
Vainio, E. A. (1921) Lichenes ab A. Yasuda in Japonia collecti. Continuatio I. Botanical Magazine 35: 4579.Google Scholar
Vězda, A. (1978) Neue oder wenig bekannte Flechten in der Tschechoslowakei. II. Folia Geobotanica et Phytotaxonomica 13: 397420.Google Scholar
Vězda, A. (1986) Neue Gattungen der Familie Lecideaceae s. lat. (Lichenes). Folia Geobotanica et Phytotaxonomica 21: 199219.Google Scholar
Vězda, A. (1991) Bacidina genus novum familiae Lecideaceae s. lat. (Ascomycetes lichenisati). Folia Geobotanica et Phytotaxonomica 25: 431432.Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White, eds): 315322. New York: Academic Press.Google Scholar
Wirth, V., Hauck, M. & Schultz, M. (2013) Die Flechten Deutschlands. Stuttgart: Eugen Ulmer KG.Google Scholar
Yakovchenko, L. S., Galanina, I. A., Malashkina, E. V. & Bakalin, V. A. (2013) Mosses and lichens in the minimally disturbed forest communities of the Lower Amur River area (Russian Far East). Komarovskiye Chteniya 60: 966.Google Scholar
Yasuda, A. (1925) Flechten Japans. Sendai.Google Scholar
Zahlbruckner, A. (1916) Neue Flechten – VIII. Annales Mycologici 14: 4561.Google Scholar
Zahlbruckner, A. (1921–1940) Catalogus Lichenum Universalis. Band I–X. Leipzig: Gebrüder Borntraeger.Google Scholar
Supplementary material: File

Gerasimova et al. supplementary material

Table S1

Download Gerasimova et al. supplementary material(File)
File 38.1 KB
Supplementary material: File

Gerasimova et al. supplementary material

Table S2

Download Gerasimova et al. supplementary material(File)
File 41 KB
Supplementary material: File

Gerasimova et al. supplementary material

Gerasimova et al. supplementary material 1

Download Gerasimova et al. supplementary material(File)
File 20.1 KB