Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T05:59:39.303Z Has data issue: false hasContentIssue false

Growth of the old forest lichen Usnea longissima at forest edges

Published online by Cambridge University Press:  23 September 2009

K. Ulrika JANSSON
Affiliation:
Department of Ecology and Environmental Science, Umeå University, SE 901 87 Umeå, Sweden. Email: ulrika.jansson@emg.umu.se
Kristin PALMQVIST
Affiliation:
Department of Ecology and Environmental Science, Umeå University, SE 901 87 Umeå, Sweden. Email: ulrika.jansson@emg.umu.se
Per-Anders ESSEEN
Affiliation:
Department of Ecology and Environmental Science, Umeå University, SE 901 87 Umeå, Sweden. Email: ulrika.jansson@emg.umu.se

Abstract

The lichen Usnea longissima was used to examine how distance from forest edge and edge contrast influence growth of pendulous lichens. Thalli of two sizes (12 and 27 cm) were transplanted to the lower canopy of old Picea abies forest at 5, 25 and 100 m distance from cutovers. Sites represented three levels of edge contrast: high (clear-cut), intermediate (3 m tall saplings) and low (6–7 m tall young forest). Lichen growth was assessed as annual length and weight gain. Growth rates of intact thalli were size-dependent, with both growth variables being higher in long than in short thalli. Distance and edge contrast had significant effects on weight gain in long thalli but not in short ones. Weight gain in long thalli was twice as high near the edge (23%) compared to the forest interior (12%). The highest weight gain (31%) occurred at intermediate contrast edges with lower growth at both low (18%) and high contrast edges (20%). Chlorophyll a concentration was highest near the edge and positively correlated with weight gain, suggesting that growth was stimulated by both increased photosynthetic capacity and higher light availability near the edge. The lower part of the canopy in forest edges apparently have favourable growth conditions for U. longissima with growth being influenced by vegetation on adjoining cutovers. Therefore growth responses cannot explain the previously observed decline of pendulous lichens following edge creation. Our results suggest that vegetation buffers can improve conditions for pendulous lichens near forest edges.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. (2004) Väderåret 2004. Väder och vatten, 9–12. Norrköping: SMHI.Google Scholar
Anon. (2005) Väderåret 2005. Väder och vatten, 1–9. Norrköping: SMHI.Google Scholar
Ahlner, S. (1931) Usnea longissima Ach. i Skandinavien. Svensk Botanisk Tidskrift 25: 395416.Google Scholar
Balsberg Påhlsson, A.-M. & Bergkvist, B. (1995) Acid deposition and soil acidification at a southwest facing edge of Norway spruce and European beech in south Sweden. Ecological Bulletins 44: 4353.Google Scholar
Chen, J., Franklin, J. F. & Spies, T. A. (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecological Applications 5: 7486.CrossRefGoogle Scholar
Coxson, D. S. & Stevenson, S. K. (2007) Influence of high-contrast and low-contrast forest edges on growth rates of Lobaria pulmonaria in the inland rainforest, British Columbia. Forest Ecology and Management 253: 103111.Google Scholar
Dahlman, L. & Palmqvist, K. (2003) Growth in two foliose tripartite lichens, Nephroma arcticum and Peltigera aphthosa: empirical modelling of external vs internal factors. Functional Ecology 17: 821831.CrossRefGoogle Scholar
Denyer, K., Burns, B. & Ogden, J. (2006) Buffering of native forest edge microclimate by adjoining tree plantations. Austral Ecology 31: 478489.CrossRefGoogle Scholar
Didham, R. K. & Lawton, J. H. (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31: 1730.Google Scholar
Esseen, P.-A. (2006) Edge influence on the old-growth forest indicator lichen Alectoria sarmentosa in natural ecotones. Journal of Vegetation Science 17: 185194.Google Scholar
Esseen, P.-A. & Ericson, L. (1982) Granskogar med långskägglav i Sverige. [Spruce forests with the lichen Usnea longissima in Sweden]. Report 1513. Stockholm: Swedish Environmental Protection Agency.Google Scholar
Esseen, P.-A. & Renhorn, K.-E. (1998) Edge effects on an epiphytic lichen in fragmented forests. Conservation Biology 12: 13071317.CrossRefGoogle Scholar
Esseen, P.-A., Ericson, L., Lindström, H. & Zackrisson, O. (1981) Occurrence and ecology of Usnea longissima in central Sweden. Lichenologist 13: 177190.CrossRefGoogle Scholar
Gaio-Oliveira, G., Moen, J., Danell, O. & Palmqvist, K. (2006) Effect of simulated reindeer grazing on the re-growth capacity of mat-forming lichens. Basic and Applied Ecology 7: 109121.CrossRefGoogle Scholar
Gauslaa, Y. (1997) Population structure of the epiphytic lichen Usnea longissima in a boreal Picea abies canopy. Lichenologist 29: 455469.CrossRefGoogle Scholar
Gauslaa, Y., Palmqvist, K., Solhaug, K. A., Holien, H., Hilmo, O., Nybakken, L., Myhre, L. C. & Ohlson, M. (2007) Growth of epiphytic old forest lichens across climatic and successional gradients. Canadian Journal of Forest Research 37: 18321845.CrossRefGoogle Scholar
Harper, K. A., MacDonald, S. E., Burton, P. J., Chen, J. Q., Brosofske, K. D., Saunders, S. C., Euskirchen, E. S., Roberts, D., Jaiteh, M. S. & Esseen, P.-A. (2005) Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology 19: 768782.CrossRefGoogle Scholar
Josefsson, T., Hellberg, E. & Östlund, L. (2005) Influence of habitat history on the distribution of Usnea longissima in boreal Scandinavia: a methodological case study. Lichenologist 37: 555567.CrossRefGoogle Scholar
Keon, D. B. & Muir, P. S. (2002) Growth of Usnea longissima across a variety of habitats in the Oregon Coast Range. Bryologist 105: 233242.CrossRefGoogle Scholar
McCune, B., Derr, C. C., Muir, P. S., Shirazi, A., Sillett, S. C. & Daly, W. J. (1996) Lichen pendants for transplant and growth experiments. Lichenologist 28: 161169.CrossRefGoogle Scholar
Nybakken, L. & Gauslaa, Y. (2007) Difference in secondary compounds and chlorophylls between fibrils and main stems in the lichen Usnea longissima suggests different functional roles. Lichenologist 39: 491494.CrossRefGoogle Scholar
Palmqvist, K. & Dahlman, L. (2006) Responses of the green algal foliose lichen Platismatia glauca to increased nitrogen supply. New Phytologist 171: 343356.CrossRefGoogle ScholarPubMed
Palmqvist, K. & Sundberg, B. (2000) Light use efficiency of dry matter gain in five macro-lichens: relative impact of microclimate conditions and species-specific traits. Plant, Cell & Environment 23: 114.CrossRefGoogle Scholar
Palmqvist, K. & Sundberg, B. (2002) Characterising photosynthesis and respiration in freshly isolated or cultured lichen photobionts. In Protocols in Lichenology. Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring. (Kranner, I., Beckett, R. P. & Varma, A. K., eds): 152181. Berlin: Springer.Google Scholar
Palmqvist, K., Dahlman, L., Valladares, F., Tehler, A., Sancho, L. G. & Mattsson, J. E. (2002) CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia 133: 295306.CrossRefGoogle ScholarPubMed
Palmqvist, K., Dahlman, L., Jonsson, A. & Nash, T. H. III (2008) The carbon economy of lichens. In Lichen Biology 2nd Ed. (Nash, T. H. III, ed): 182215. Cambridge: Cambridge University Press.Google Scholar
Raab, B. & Vedin, H. (eds) (1995) Climate, lakes and Rivers. The National Atlas of Sweden. Stockholm: SNA Publishing.Google Scholar
Renhorn, K.-E. & Esseen, P.-A. (1995) Biomass growth in five alectorioid lichen epiphytes. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft 70: 133140.Google Scholar
Renhorn, K.-E., Esseen, P.-A., Palmqvist, K. & Sundberg, B. (1997) Growth and vitality of epiphytic lichens I. Responses to microclimate along a forest edge-interior gradient. Oecologia 109: 19.CrossRefGoogle Scholar
Rheault, H., Drapeau, P., Bergeron, Y. & Esseen, P.-A. (2003) Edge effects on epiphytic lichens in managed black spruce forests of eastern North America. Canadian Journal of Forest Research 33: 2332.CrossRefGoogle Scholar
Ries, L., Fletcher, R. J. Jr, Battin, J. & Sisk, T. D. (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annual Review of Ecology, Evolution and Systematics 35: 491522.CrossRefGoogle Scholar
Saunders, D. A., Hobbs, R. J. & Margules, C. R. (1991) Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5: 1832.Google Scholar
Sérusiaux, E. (1989) Liste Rouge des Macrolichens dans la Communauté, Européenne. Liege: Centre de Recherches sur les Lichens.Google Scholar
Sillett, S. C. (1994) Growth rates of two epiphytic cyanolichens species at the edge and in the interior of a 700-year-old douglas fir forest in the western Cascades of Oregon. Bryologist 97: 321324.CrossRefGoogle Scholar
Stevenson, S. K. & Coxson, D. S. (2008) Growth responses of Lobaria retigera to forest edge and canopy structure in the inland temperate rainforest, British Columbia. Forest Ecology and Management 256: 618623.CrossRefGoogle Scholar
Thor, G. & Arvidsson, L. (eds) (1999) Rödlistade lavar i Sverige – Artfakta. [Swedish Red Data Book of Lichens]. Uppsala: Swedish Species Information Centre.Google Scholar