Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T19:29:16.812Z Has data issue: false hasContentIssue false

Increased snow accumulation reduces survival and growth in dominant mat-forming arctic-alpine lichens

Published online by Cambridge University Press:  03 May 2016

Massimo BIDUSSI
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway.
Knut Asbjørn SOLHAUG
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway.
Yngvar GAUSLAA*
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway.

Abstract

Relative growth rates (RGR) and carbon-based secondary compounds (CBSCs) were quantified in four dominant terricolous arctic-alpine mat-forming lichens with different preferences for snow cover. The aim was to evaluate the effects of snow depth, and thus snow cover duration, on lichen growth and performance. The species, Alectoria ochroleuca, Flavocetraria nivalis, Cladonia mitis and Cetrariella delisei, are associated with increasing snow depth, respectively. They were transplanted for one year at five snow depths (0, 60, 120, 160 and 200 cm measured in early May) along each of four natural ridge to snow bed gradient transects in oceanic-alpine sites (western Norway). Snow slightly thicker than in source habitats caused negative RGR in the ridge top-dependent A. ochroleuca and the co-occurring F. nivalis with somewhat higher snow tolerance. Only C. mitis with the broadest ecological niche had positive RGR along most of the gradients (0–160 cm), even outside its natural range. The most snow-tolerant species, C. delisei, tolerant also to temporal inundation in water, had the lowest RGR. Nevertheless, it performed as well in places with little or no snow as in places where it grows naturally. Snow depth significantly affected total concentrations of CBSCs mainly in A. ochroleuca, which experienced substantial mass loss under snow. There was a highly significant increase in usnic acid concentration with increasing mass loss in A. ochroleuca, probably because usnic acid decays more slowly than other components. In conclusion, snow reduced lichen RGR, but in species-specific ways. Therefore, increasing snow depth per se along spatial and/or temporal scales likely reduces abundance and distribution of dominant mat-forming lichens in the alpine ecosystems of Scandinavia.

Type
Articles
Copyright
© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AMAP (2012) Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost. SWIPA 2011 Overview Report. Oslo: Arctic Monitoring and Assessment Programme (AMAP).Google Scholar
Asplund, J. & Wardle, D. A. (2013) The impact of secondary compounds and functional characteristics on lichen palatability and decomposition. Journal of Ecology 101: 689700.CrossRefGoogle Scholar
Aune, B. (1993) Temperaturnormaler: Normalperiode 1961–90. Oslo: Meteorologisk Insititutt.Google Scholar
Benedict, J. B. (1990) Lichen mortality due to late-lying snow: results of a transplant study. Arctic and Alpine Research 22: 8189.CrossRefGoogle Scholar
Benedict, J. B. (1991) Experiments on lichen growth. II. Effects of a seasonal snow cover. Arctic and Alpine Research 23: 189199.CrossRefGoogle Scholar
Bernier, P. Y., Desjardins, R. L., Karimi-Zindashty, Y., Worth, D., Beaudoin, A., Luo, Y. & Wang, S. (2011) Boreal lichen woodlands: a possible negative feedback to climate change in eastern North America. Agricultural and Forest Meteorology 151: 521528.CrossRefGoogle Scholar
Bjerke, J. W. (2009) Ice encapsulation protects rather than disturbs the freezing lichen. Plant Biology 11: 227235.CrossRefGoogle ScholarPubMed
Bjerke, J. W. (2011) Winter climate change: ice encapsulation at mild subfreezing temperatures kills freeze-tolerant lichens. Environmental and Experimental Botany 72: 404408.CrossRefGoogle Scholar
Bjerke, J. W., Lerfall, K. & Elvebakk, A. (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochemical and Photobiological Sciences 1: 678685.CrossRefGoogle ScholarPubMed
Bokhorst, S. F., Bjerke, J. W., Tømmervik, H., Callaghan, T. V. & Phoenix, G. K. (2009) Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. Journal of Ecology 97: 14081415.CrossRefGoogle Scholar
Bokhorst, S., Bjerke, J. W., Davey, M. P., Taulavuori, K., Taulavuori, E., Laine, K., Callaghan, T. V. & Phoenix, G. K. (2010) Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiologia Plantarum 140: 128140.CrossRefGoogle Scholar
Boudreault, C., Zouaoui, S., Drapeau, P., Bergeron, Y. & Stevenson, S. (2013) Canopy openings created by partial cutting increase growth rates and maintain the cover of three Cladonia species in the Canadian boreal forest. Forest Ecology and Management 304: 473481.CrossRefGoogle Scholar
Chapin, F. S. III, Matson, P. A. & Vitousek, P. M. (2012) Nutrient cycling. In Principles of Terrestrial Ecosystem Ecology (F. S. Chapin III, P. A. Matson & P. M. Vitousek, eds): 259296. New York: Springer Verlag.Google Scholar
Cooper, E. J., Smith, F. M. & Wookey, P. A. (2001) Increased rainfall ameliorates the negative effect of trampling on the growth of High Arctic forage lichens. Symbiosis 31: 153171.Google Scholar
Cornelissen, J. H. C., Callaghan, T. V., Alatalo, J. M., Michelsen, A., Graglia, E., Hartley, A. E., Hik, D. S., Hobbie, S. E., Press, M. C., Robinson, C. H., et al. (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? Journal of Ecology 89: 984994.CrossRefGoogle Scholar
Coxson, D. S. & Curteanu, M. (2002) Decomposition of hair lichens (Alectoria sarmentosa and Bryoria spp.) under snowpack in montane forest, Cariboo Mountains, British Columbia. Lichenologist 34: 395401.CrossRefGoogle Scholar
Crittenden, P. D. & Porter, N. (1991) Lichen-forming fungi: potential sources of novel metabolites. Trends in Biotechnology 9: 409414.CrossRefGoogle ScholarPubMed
Dahl, E. (1956) Rondane Mountain vegetation in south Norway and its relation to the environment. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo. I. Matem.-Naturvidenskapelig Klasse Vol. 1956 3: 1374.Google Scholar
den Herder, M., Kytöviita, M. M. & Niemelä, P. (2003) Growth of reindeer lichens and effects of reindeer grazing on ground cover vegetation in a Scots pine forest and a subarctic heathland in Finnish Lapland. Ecography 26: 312.CrossRefGoogle Scholar
eKlima (2015) Free access to weather and climate data from Norwegian Meteorological Institute from historical data to real time observations. http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,73_39049&_dad=portal&_schema=PORTAL. Accessed September 2015.Google Scholar
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., et al. (2012 a) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters 15: 164175.CrossRefGoogle ScholarPubMed
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Dorrepaal, E., Elumeeva, T. G., et al. (2012 b) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2: 453457.CrossRefGoogle Scholar
Evans, G. C. (1972) The Quantitative Analysis of Plant Growth. Oxford: Blackwell Scientific Publications.Google Scholar
Feige, G. B., Lumbsch, H. T., Huneck, S. & Elix, J. A. (1993) Identification of lichen substances by a standardized high-performance liquid-chromatographic method. Journal of Chromatography 646: 417427.CrossRefGoogle Scholar
Førland, E. J. (1993) Precipitation normals, normal period 1961–1990 [In Norwegian]. Norwegian Institute of Meteorology, Report 39/93. Klima, 163.Google Scholar
Gaio-Oliveira, G., Moen, J., Danell, Ö. & Palmqvist, K. (2006) Effect of simulated reindeer grazing on the re-growth capacity of mat-forming lichens. Basic and Applied Ecology 7: 109121.CrossRefGoogle Scholar
Gauslaa, Y. (1984) Heat resistance and energy budget in different Scandinavian plants. Holarctic Ecology 7: 178.Google Scholar
Gilbert, O. L. & Fox, B. W. (1985) Lichens of high ground in the Cairngorm Mountains, Scotland. Lichenologist 17: 5166.CrossRefGoogle Scholar
Gilbert, O. L., Fryday, A. M., Giavarini, V. J. & Coppins, B. J. (1992) The lichen vegetation of high ground in the Ben Nevis Range, Scotland. Lichenologist 24: 4356.Google Scholar
Heggberget, T. M., Gaare, E. & Ball, J. P. (2002) Reindeer (Rangifer tarandus) and climate change: importance of winter forage. Rangifer 22: 1331.CrossRefGoogle Scholar
Hestmark, G., Skogesal, A. & Skullerud, O. (2005) Growth, population density and population structure of Cetraria nivalis during 240 years of primary colonization. Lichenologist 37: 535541.CrossRefGoogle Scholar
Huneck, S. (1999) The significance of lichens and their metabolites. Naturwissenschaften 86: 559570.CrossRefGoogle ScholarPubMed
Ingólfsdóttir, K. (2002) Usnic acid. Phytochemistry 61: 729736.CrossRefGoogle ScholarPubMed
IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.Google Scholar
Jonasson, S. (1981) Plant communities and species distribution of low alpine Betula nana heaths in northernmost Sweden. Vegetatio 44: 5164.CrossRefGoogle Scholar
Kappen, L. (1993) Plant activity under snow and ice, with particular reference to lichens. Arctic 46: 297302.CrossRefGoogle Scholar
Kappen, L., Sommerkorn, M. & Schroeter, B. (1995) Carbon acquisition and water relations of lichens in polar regions - potentials and limitations. Lichenologist 27: 531545.Google Scholar
Kausrud, K. L., Mysterud, A., Steen, H., Vik, J. O., Østbye, E., Cazelles, B., Framstad, E., Eikeset, A. M., Mysterud, I., Solhøy, T., et al. (2008) Linking climate change to lemming cycles. Nature 456: 9397.CrossRefGoogle ScholarPubMed
Kristmundsdóttir, T., Aradóttir, H. A., Ingólfsdóttir, K. & Ögmundsdóttir, H. M. (2002) Solubilization of the lichen metabolite (+)-usnic acid for testing in tissue culture. Journal of Pharmacy and Pharmacology 54: 14471452.CrossRefGoogle ScholarPubMed
Lang, S. I., Cornelissen, J. H. C., Shaver, G. R., Ahrens, M., Callaghan, T. V., Molau, U., ter Braak, C. J. F., Hölzer, A. & Aerts, R. (2012) Arctic warming on two continents has consistent negative effects on lichen diversity and mixed effects on bryophyte diversity. Global Change Biology 18: 10961107.CrossRefGoogle Scholar
Larson, D. W. & Kershaw, K. A. (1975) Studies on lichen dominated systems. XI. Lichen-heath and winter snow cover. Canadian Journal of Botany 53: 621626.CrossRefGoogle Scholar
Lawrey, J. D. (1986) Biological role of lichen substances. Bryologist 89: 111122.CrossRefGoogle Scholar
Matveyeva, N. & Chernov, Y. (2000) Biodiversity of terrestrial ecosystems. In The Arctic: Environment, People, Policy (M. Nutall & T. Callaghan, eds):233273. Reading: Harwood Academic Publishers.Google Scholar
McEvoy, M., Nybakken, L., Solhaug, K. A. & Gauslaa, Y. (2006) UV triggers the synthesis of the widely distributed secondary compound usnic acid. Mycological Progress 5: 221229.CrossRefGoogle Scholar
Moen, A. (1999) National Atlas of Norway: Vegetation. Hønefoss: Norwegian Mapping Authority.Google Scholar
Molnár, K. & Farkas, E. (2010) Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift fur Naturforschung Section C-A Journal of Biosciences 65: 157173.CrossRefGoogle ScholarPubMed
Moore, T. R. (1984) Litter decomposition in a subarctic spruce-lichen woodland, eastern Canada. Ecology 65: 299308.CrossRefGoogle Scholar
Nash III, T. H. (2008) Nitrogen, its metabolism and potential contribution to ecosystems. In Lichen Biology (T. H. Nash III, ed.): 216233. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nieminen, S. & Heiskari, U. (1989) Diets of freely grazing and captive reindeer during summer and winter. Rangifer 9: 1734.CrossRefGoogle Scholar
Nordhagen, R. (1928) Die Vegetation und Flora des Sylenegebietes I. Die Vegetation. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo. I. Matem.- Naturvidenskapelig Klasse Vol. 1927 1: 1612.Google Scholar
Nybakken, L. & Julkunen-Tiitto, R. (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38: 477485.CrossRefGoogle Scholar
Pannewitz, S., Schlensog, M., Green, T. G. A., Sancho, L. G. & Schroeter, B. (2003) Are lichens active under snow in continental Antarctica? Oecologia 135: 3038.CrossRefGoogle Scholar
Phoenix, G. K. & Lee, J. A. (2004) Predicting impacts of Arctic climate change: past lessons and future challenges. Ecological Research 19: 6574.CrossRefGoogle Scholar
Rees, W. G., Stammler, F. M., Danks, F. S. & Vitebsky, P. (2008) Vulnerability of European reindeer husbandry to global change. Climatic Change 87: 199217.CrossRefGoogle Scholar
Saha, S. K., Rinke, A. & Dethloff, K. (2006) Future winter extreme temperature and precipitation events in the Arctic. Geophysical Research Letters 33: L15818. doi: 10.1029/2006gl026451 CrossRefGoogle Scholar
Schadt, C. W., Martin, A. P., Lipson, D. A. & Schmidt, S. K. (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301: 13591361.CrossRefGoogle ScholarPubMed
Schroeter, B. & Scheidegger, C. (1995) Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytologist 131: 273285.CrossRefGoogle Scholar
Scott, P. A. & Rouse, W. R. (1995) Impacts of increased winter snow cover on upland tundra vegetation: a case example. Climate Research 5: 2530.CrossRefGoogle Scholar
Sheard, J. W. (1968) Vegetation pattern in a moss-lichen heath associated with primary topographic features on Jan Mayen. Bryologist 71: 2128.CrossRefGoogle Scholar
Solhaug, K. A. & Gauslaa, Y. (2012) Secondary lichen compounds as protection against excess solar radiation and herbivores. Progress in Botany 73: 283304.Google Scholar
Solhaug, K. A., Larsson, P. & Gauslaa, Y. (2010) Light screening in lichen cortices can be quantified by chlorophyll fluorescence techniques for both reflecting and absorbing pigments. Planta 231: 10031011.CrossRefGoogle ScholarPubMed
Stark, S. & Hyvärinen, M. (2003) Are phenolics leaching from the lichen Cladina stellaris sources of energy rather than allelopathic agents for soil microorganisms? Soil Biology and Biochemistry 35: 13811385.CrossRefGoogle Scholar
Svihus, B. & Holand, Ø. (2000) Lichen polysaccharides and their relation to reindeer/caribou nutrition. Journal of Range Management 53: 642648.CrossRefGoogle Scholar
Taylor, B. R. & Jones, H. G. (1990) Litter decomposition under snow cover in a balsam fir forest. Canadian Journal of Botany 68: 112120.CrossRefGoogle Scholar
Thell, A. & Moberg, R. (2011) Nordic Lichen Flora Vol. 4. Parmeliaceae. Uppsala: The Nordic Lichen Society, Uppsala University.Google Scholar
Tømmervik, H., Hogda, K. A. & Solheim, L. (2003) Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sensing of Environment 85: 370388.CrossRefGoogle Scholar
Turunen, M., Soppela, P., Kinnunen, H., Sutinen, M. L. & Martz, F. (2009) Does climate change influence the availability and quality of reindeer forage plants? Polar Biology 32: 813832.CrossRefGoogle Scholar
Uchida, M., Nakatsubo, T., Kanda, H. & Koizumi, H. (2006) Estimation of the annual primary production of the lichen Cetrariella delisei in a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard. Polar Research 25: 3949.Google Scholar
van der Wal, R., Brooker, R., Cooper, E. & Langvatn, R. (2001) Differential effects of reindeer on high Arctic lichens. Journal of Vegetation Science 12: 705710.CrossRefGoogle Scholar
Vistnes, I. I. & Nellemann, C. (2008) Reindeer winter grazing in alpine tundra: impacts on ridge community composition in Norway. Arctic, Antarctic, and Alpine Research 40: 215224.CrossRefGoogle Scholar
Wahren, C. H. A., Walker, M. D. & Bret-Harte, M. S. (2005) Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Global Change Biology 11: 537552.CrossRefGoogle Scholar
Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H. R., Ahlquist, L. E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V., Carroll, A. B., et al. (2006) Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 13421346.CrossRefGoogle ScholarPubMed
Wetmore, C. M. (1982) Lichen decomposition in a black spruce bog. Lichenologist 14: 267271.CrossRefGoogle Scholar