Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T05:55:38.530Z Has data issue: false hasContentIssue false

Meridianelia, a new genus in the Elixiaceae (Ascomycota) from Tasmania

Published online by Cambridge University Press:  26 May 2009

Gintaras KANTVILAS
Affiliation:
Tasmanian Herbarium, Private Bag 4, Hobart, Tasmania 7001, Australia. Email: gkantvilas@tmag.tas.gov.au
H. Thorsten LUMBSCH
Affiliation:
The Field Museum, Department of Botany, 1400 S Lake Shore Drive, Chicago, IL 60605, USA.

Abstract

Meridianelia maccarthyana Kantvilas & Lumbsch, gen. et sp. nov., is described, based on collections from Tasmania. This taxon represents only the second member of the family Elixiaceae. It is compared to Elixia flexella (Ach.) Lumbsch and to the superficially similar genus Trapelia. The family Elixiaceae is redefined briefly to account for the inclusion of a second genus.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Culberson, C. F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography 72: 113125.CrossRefGoogle ScholarPubMed
Culberson, C. F., Culberson, W. L. & Johnson, A. (1981) A standardized TLC analysis of β-orcinol depsidones. Bryologist 84: 1629.Google Scholar
Culberson, C. F. & Johnson, A. (1982) Substitution of methyl tert.-butyl ether for diethyl ether in the standardized thin-layer chromatographic method for lichen products. Journal of Chromatography 238: 483487.Google Scholar
Elix, J. A. & Ernst-Russell, K. D. (1993) A Catalogue of Standardized Thin Layer Chromatographic Data and Biosynthetic Relationships for Lichen Substances, 2nd edn. Canberra: Australian National University.Google Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES, Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.Google Scholar
Lumbsch, H. T. (1997) Systematic studies in the suborder Agyriinae (Lecanorales). Journal of the Hattori Botanical Laboratory 83: 173.Google Scholar
Lumbsch, H. T., Schmitt, I., Döring, H & Wedin, M. (2001) ITS sequence data suggest variability of ascus types and support ontogenetic characters as phylogenetic discriminators in the Agyriales (Ascomycota). Mycological Research 105: 265274.CrossRefGoogle Scholar
Lumbsch, H. T., Palice, Z., Wiklund, E., Ekman, S. & Wedin, M. (2004) Supraordinal phylogenetic relationships of Lecanoromycetes based on Bayesian analysis of combined nuclear and mitochondrial sequences. Molecular Phylogenetics and Evolution 31: 822832.CrossRefGoogle ScholarPubMed
Lumbsch, H. T., Schmitt, I., Lücking, R., Wiklund, E. & Wedin, M. (2007 a) The phylogenetic placement of Ostropales within Lecanoromycetes (Ascomycota) revisited. Mycological Research 111: 257267.CrossRefGoogle ScholarPubMed
Lumbsch, H. T., Schmitt, I., Mangold, A. & Wedin, M. (2007 b) Ascus types are phylogenetically misleading in Trapeliaceae and Agyriaceae (Ostropomycetidae, Ascomycota). Mycological Research 111: 11331141.CrossRefGoogle ScholarPubMed
Lumbsch, H. T., Archer, A. W. & Elix, J. A. (2007 c) A new species of Loxospora (lichenized Ascomycota: Sarrameanaceae) from Australia. Lichenologist 39: 509517.Google Scholar
Meyer, B. & Printzen, C. (2000) Proposal for the standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32: 571583.CrossRefGoogle Scholar
Page, R. D. M. (1996) Treeview: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357358.Google ScholarPubMed
Rodriguez, F., Oliver, J. F., Martín, A. & Medina, J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.CrossRefGoogle ScholarPubMed
Swofford, D. L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Mass: Sinauer Associates.Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 46734680.CrossRefGoogle ScholarPubMed
Wedin, M., Wiklund, E., Crewe, A., Döring, H., Ekman, S., Nyberg, Å., Schmitt, I. & Lumbsch, H. T. (2005) Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycological Research 109: 159172.CrossRefGoogle ScholarPubMed
Zhou, S. & Stanosz, G. R. (2001) Primers for amplification of mt SSU rDNA, and a phylogenetic study of Botryosphaeria and associated anamorphic fungi. Mycological Research 105: 10331044.CrossRefGoogle Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.Google Scholar