Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T07:27:17.742Z Has data issue: false hasContentIssue false

Molecular phylogeny resolves a taxonomic misunderstanding and places Geisleria close to Absconditella s. str. (Ostropales: Stictidaceae)

Published online by Cambridge University Press:  09 January 2014

André APTROOT
Affiliation:
ABL Herbarium, Gerrit van der Veenstraat 107, NL-3762 XK Soest, The Netherlands. Email: andreaptroot@gmail.com
Sittiporn PARNMEN
Affiliation:
Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA
Robert LÜCKING
Affiliation:
Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA
Elisabeth BALOCH
Affiliation:
Department of Cryptogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden; and Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
Patricia JUNGBLUTH
Affiliation:
Departamento de Botânica, IBB, UNESP. Caixa Postal 510, CEP 18618-970, Distrito de Rubião Jr., Botucatu - SP, Brazil
Marcela E. S. CÁCERES
Affiliation:
Departamento de Biociências, Universidade Federal de Sergipe, CEP: 49.500-000, Itabaiana, Sergipe, Brazil
H. Thorsten LUMBSCH
Affiliation:
Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA

Abstract

The phylogenetic position of the genus Geisleria and its type species G. sychnogonioides was reconstructed using sequence data of the mitochondrial small subunit (mtSSU), the nuclear large subunit rDNA (nuLSU) and the first subunit of the RNA polymerase (RPB1). The species, previously classified in Verrucariaceae (Eurotiomycetes) and Strigulaceae (Dothideomycetes), is sister to the type of the genus Absconditella, A. sphagnorum, and nested within the genera Absconditella and Cryptodiscus combined (which also includes the lichenized Bryophagus). At first glance it appears to be a further example of parallel evolution of perithecioid ascomata within Stictidaceae (Lecanoromycetes: Ostropales), besides Ostropa and Robergea, adding to the growing list of perithecioid forms nested within apothecioid lineages in Ostropomycetidae, and specifically Ostropales, with other examples known from Graphidaceae (several genera), Gyalectaceae (Belonia), and Porinaceae. However, revision of type material collected by Nitschke revealed that the species actually develops typical apothecia with a narrowly exposed disc. We conclude that Geisleria sychnogonoides was erroneously considered a pyrenocarpous taxon, because in dry conditions the apothecia are closed and not recognizable as such. The species usually grows on unstable soil and therefore often only develops young, more or less closed ascomata (yet with mature ascospores), and has also been confused with the superficially similar Belonia incarnata, in which the ascomata remain closed even when mature. Geisleriasychnogonioides has so far only been known as a rarely reported pioneer species from loamy soils in Europe and North America. Here it is reported to occur abundantly on lateritic soils in subtropical Brazil, suggesting that it is cosmopolitan and possibly common, but much overlooked.

Type
Articles
Copyright
Copyright © British Lichen Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baloch, E., Gilenstam, G. & Wedin, M. (2009) Phylogeny and classification of Cryptodiscus, with taxonomic synopsis of the Swedish species. Fungal Diversity 38: 5168.Google Scholar
Baloch, E., Lücking, R., Lumbsch, H. T. & Wedin, M. (2010) Major clades and phylogenetic relationships between lichenized and non-lichenized lineages in Ostrapales (Ascomycota: Lecanoromycetes). Taxon 59: 14831494.Google Scholar
Baloch, E., Lücking, R., Lumbsch, H. T. & Wedin, M. (2013) New combinations in Gyalecta for former Belonia and Pachyphiale species. Lichenologist 45: 723727.Google Scholar
de Bruyn, U., Aptroot, A., Homm, T. & Sipman, H. J. M. (2008) Ergebnisse eines Flechten-Kartierungstreffens im Elbe-Weser-Dreieck (Nordwest-Niedersachsen). Aktuelle Lichenologische Mitteilungen NF 15: 413.Google Scholar
Drummond, A., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., et al. (2011) Geneious v5.4. Available from http://www.geneious.com Google Scholar
Egan, R. S. (1987) A fifth checklist of the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada. Bryologist 90: 77173.Google Scholar
Ernst, G. (1993) Zur Ökologie und Verbreitung von Geisleria sychnogonioides, einer bislang kaum bekannten terricolen Flechte. Herzogia 9: 321337.Google Scholar
Ertz, D., Miądlikowska, J., Lutzoni, F., Dessein, S., Raspe, O., Vigneron, N., Hofstetter, V. & Diederich, P. (2009) Towards a new classification of the Arthoniales (Ascomycota) based on a three-gene phylogeny focusing on the genus Opegrapha . Mycological Research 113: 141152.Google Scholar
Eschweiler, F. G. (1824) Systema Lichenum, Genera Exhibens Rite Distincta, Pluribus Novis Adaucta. Nürnberg: J. L. Schrag.Google Scholar
Felsenstein, J. (1985) Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39: 783791.Google Scholar
Geiser, D. M., Gueidan, C., Miądlikowska, J., Lutzoni, F., Kauff, F., Hofstetter, V., Fraker, E., Schoch, C. L., Tibell, L., Untereiner, W. A. et al. (2006) Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98: 10531064.CrossRefGoogle ScholarPubMed
Grube, M. (1998) Classification and phylogeny in the Arthoniales (lichenized ascomycetes). Bryologist 101: 377391.Google Scholar
Grube, M. & Hawksworth, D. L. (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycological Research 111: 11161132.Google Scholar
Grube, M., Baloch, E. & Lumbsch, H. T. (2004) The phylogeny of Porinaceae (Ostropomycetidae) suggests a neotenic origin of perithecia in Lecanoromycetes. Mycological Research 108: 11111118.Google Scholar
Hansen, K. & Pfister, D. H. (2006) Systematics of the Pezizomycetes – the operculate discomycetes. Mycologia 98: 10291040.Google Scholar
Harris, R. C. (1995) More Florida Lichens. New York: Privately published.Google Scholar
Hawksworth, D. L. & LaGreca, S. (2007) New bottles for old wine: fruit body types, phylogeny, and classification. Mycological Research 111: 9991000.Google Scholar
Henssen, A. & Jahns, H. M. (1974) Lichenes. Eine Einführung in die Flechtenkunde. Stuttgart: Georg Thieme Verlag.Google Scholar
Henssen, A. & Thor, G. (1994) Developmental morphology of the “Zwischengruppe” between Ascohymeniales and Ascoloculares . In Ascomycete Systematics. Problems and Perspectives in the Nineties (Hawksworth, D. L., ed.): 4356. NATO Advanced Science Institutes Series. New York: Plenum Press.Google Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.Google Scholar
Kauff, F. & Lutzoni, F. (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138156.Google Scholar
Lücking, R., Huhndorf, S., Pfister, D. H., Plata, E. R. & Lumbsch, H. T. (2009) Fungi evolved right on track. Mycologia 101: 810822.Google Scholar
Lücking, R., Rivas Plata, E., Mangold, A., Sipman, H. J. M., Aptroot, A., González, R. M., Kalb, K., Chaves, J. L., Ventura, N. & Esquivel, R. E. (2011) Natural history of Nash's Pore Lichens, Trinathotrema (Ascomycota: Ostropales: Stictidaceae). Bibliotheca Lichenologica 106: 187210.Google Scholar
Lumbsch, H. T. (2000) Phylogeny of filamentous ascomycetes. Naturwissenschaften 87: 335342.Google Scholar
Lumbsch, H. T. & Huhndorf, S. M. (2007) Whatever happened to the pyrenomycetes and loculoascomycetes? Mycological Research 111: 10641074.Google Scholar
Lumbsch, H. T., Schmitt, I. & Messuti, M. I. (2001) Utility of nuclear SSU and LSU rDNA data sets to discover the ordinal placement of the Coccotremataceae (Ascomycota). Organisms, Diversity & Evolution 1: 99112.Google Scholar
Lumbsch, H. T., Schmitt, I., Barker, D. & Pagel, M. (2006) Evolution of micromorphological and chemical characters in the lichen-forming fungal family Pertusariaceae . Biological Journal of the Linnean Society 89: 615626.Google Scholar
Lumbsch, H. T., Schmitt, I., Lücking, R., Wiklund, E. & Wedin, M. (2007) The phylogenetic placement of Ostropales within Lecanoromycetes (Ascomycota) revisited. Mycological Research 111: 257267.Google Scholar
Luttrell, E. S. (1951) Taxonomy of the Pyrenomycetes. University of Missouri Studies 24: 1120.Google Scholar
Mangold, A., Martin, M. P., Lücking, R. & Lumbsch, H. T. (2008) Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota: Ostropales). Taxon 57: 476486.Google Scholar
Matheny, P. B., Liu, Y. J., Ammirati, J. F. & Hall, B. D. (2002) Using RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). American Journal of Botany 89: 688698.Google Scholar
Nannfeldt, J. A. (1932) Studien über die Morphologie und Systematik der nicht-lichenisierten inoperculaten Discomyceten. Nova Acta Regiae Societatis Upsaliensis 8: 1368.Google Scholar
Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2007) AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581583.Google Scholar
O'Donnell, K., Cigelnik, E., Weber, N. S. & Trappe, J. M. (1997) Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia 89: 4865.Google Scholar
Page, R. D. M. (1996) Treeview: an application to display phylogenetic trees on personal computers. Computer Applied Biosciences 12: 357358.Google Scholar
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.Google Scholar
Rabenhorst, L. (1861) Fasciculus XXI. In Lichenes Europaei Exsiccati. Die Flechten Europa's unter Mitwirkung mehrerer nahmhafter Botaniker gesammelt und herausgeben von Dr. L. Rabenhorst. Neustadt-Dresden: Privately published.Google Scholar
Rivas Plata, E., Lücking, R. & Lumbsch, H. T. (2012) A new classification for the family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Fungal Diversity 52: 107121.Google Scholar
Rivas Plata, E., Parnmen, S., Staiger, B., Mangold, A., Frisch, A., Weerakoon, G., Hernández, J. E., Cáceres, M. E. S., Kalb, K., Sipman, H. J. M., et al. (2013) A molecular phylogeny of Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales) including 428 species. MycoKeys 6: 5594.Google Scholar
Roux, C. & Sérusiaux, E. (2004) Le genre Strigula (Lichens) en Europe et en Macaronésie. Bibliotheca Lichenologica 90: 196.Google Scholar
Santesson, R. (1952) Foliicolous Lichens I. A revision of the taxonomy of the obligately foliicolous, lichenized fungi. Symbolae Botanicae Upsalienses 12(1): 1590.Google Scholar
Schmitt, I., Mueller, G. & Lumbsch, H. T. (2005) Ascoma morphology is homoplaseous and phylogenetically misleading in some pyrenocarpous lichens. Mycologia 97: 362374.Google Scholar
Schmitt, I., Yamamoto, Y. & Lumbsch, H. T. (2006) Phylogeny of Pertusariales (Ascomycotina): resurrection of Ochrolechiaceae and new circumscription of Megasporaceae . Journal of the Hattori Botanical Laboratory 75: 753764.Google Scholar
Schmitt, I., del Prado, R., Grube, M. & Lumbsch, H. T. (2009) Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Molecular Phylogenetics and Evolution 52: 3444.Google Scholar
Schmitt, I., Fankhauser, J. D., Sweeney, K., Spribille, T., Kalb, K. & Lumbsch, H. T. (2010) Gyalectoid Pertusaria species form a sister-clade to Coccotrema (Ostropomycetidae, Ascomycota). Mycology 1: 7583.Google Scholar
Schoch, C. L., Sung, G. H., Lopez-Giraldez, F., Townsend, J. P., Miądlikowska, J., Hofstetter, V., Robbertse, B., Matheny, P. B., Kauff, F., Wang, Z., et al. (2009) The Ascomycota Tree of Life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58: 224239.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.Google Scholar
Stiller, J. W. & Hall, B. D. (1997) The origin of red algae: implications for plastid evolution. Proceedings of the National Academy of Sciences of the United States of America 94: 45204525.Google Scholar
Stizenberger, E. (1882) Lichenes helvetici eorumque stationes et distributio. Addenda, Corrigenda, II, Introductio. Bericht über die Thätigkeit der St. Gallischen naturwissenschaftlichen Gesellschaft 1880–1881: 255522.Google Scholar
Swinscow, T. D. V. (1967) Pyrenocarpous lichens: 12. The genus Geisleria Nitschke. Lichenologist 3: 418422.Google Scholar
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 42384246.Google Scholar
Zahlbruckner, A. (1907) Lichenes (Flechten). Spezieller Teil. In Die Natürlichen Pflanzenfamilien (Engler, A. & Prantl, K., eds): 61263. Leipzig: Wilhelm Engelmann.Google Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.Google Scholar