Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T16:43:54.318Z Has data issue: false hasContentIssue false

New and overlooked species from the Galapagos Islands: the generic concept of Diploicia reassessed

Published online by Cambridge University Press:  27 September 2016

Frank BUNGARTZ*
Affiliation:
Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galapagos, Ecuador; mailing address: Schedestraße 8, 53113 Bonn, Germany
John A. ELIX
Affiliation:
Research School of Chemistry, Building 137, Australian National University, Canberra, A.C.T. 0200, Australia
Klaus KALB
Affiliation:
Lichenologisches Institut Neumarkt, Im Tal 12, D-92318 Neumarkt, Germany and University of Regensburg, Institute of Botany, Universitätsstraße 31, D-93040 Regensburg
Mireia GIRALT
Affiliation:
Departament de Bioquímica i Biotecnologia (Àrea de Botànica), Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Catalonia, Spain

Abstract

Three new species of Diploicia are described from the Galapagos Islands and a fourth, D. glebosa, is transferred from Pyxine; all four are considered endemic to the archipelago. In order to accommodate these species, the generic concept of Diploicia has been emended. Two of the species are sterile; D. leproidica is placodioid-leproid, where the thalli derive from pseudocorticate granules aggregating into small, placodioid rosettes with distinctly lobate margins. The second sterile species, D. squamulosa, forms scattered squamules that eventually aggregate into small, placodioid rosettes. The two fertile species, D. glebosa, with an olivaceous to beige, smooth, epruinose upper surface, and D. neotropica, with a white to grey-white, roughened, pruinose upper surface, form larger thalli typical of Diploicia, have apothecia that are initially lecideine, but are soon engulfed and hidden by a thick thalline margin. Anatomically the proper exciple remains visible for a considerable part of the ontogeny, although it eventually becomes almost completely reduced to a few pigmented or almost hyaline hyphae. This transition from lecideine to lecanorine apothecia is similar to the physciaeformis-type ontogeny observed in some Pyxine species. Several species currently accommodated in Buellia s. lat. with diploicin and effigurate thalli that lack distinctly lobate margins are discussed and the Socotran endemic Physcia endopyxinea is transferred into Diploicia.

Type
Articles
Copyright
© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arup, U., Ekman, S., Lindblom, L. & Mattsson, J.-E. (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25: 6171.CrossRefGoogle Scholar
Awasthi, D. D. (1975) A monograph of the lichen genus Dirinaria. Bibliotheca Lichenologica 2: 1108.Google Scholar
Brown, G. & Mies, B. A. (2012) Vegetation ecology of Socotra. Plant and Vegetation 7: 1382.Google Scholar
Bungartz, F. (2002) Recipes and other techniques. In Lichen Flora of the Greater Sonoran Desert Region. Vol. 1 (T. H. Nash III, B. D. Ryan, C. Gries & F. Bungartz, eds): 4952. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Bungartz, F. & Grube, U. (2005) Buellia subalbula, studies of a complex species from semi-arid to arid regions. In Abstracts of the XVII International Botanical Congress, 17–23 July, 2005, Vienna, Austria, p. 450.Google Scholar
Bungartz, F. & Nash, T. H. III (2004) Buellia subalbula (Nyl.) Müll. Arg. and B. amabilis de Lesd., two species from North America with one-septate ascospores: a comparison with Buellia [“Diplotomma”] venusta (Körb.) Lettau. Bibliotheca Lichenologica 88: 4966.Google Scholar
Bungartz, F., Elix, J. A. & Nash, T. H. III, (2004) The genus Buellia sensu lato in the Greater Sonoran Desert Region: saxicolous species with one-septate ascospores containing xanthones. Bryologist 107: 459479.Google Scholar
Bungartz, F., Nordin, A. & Grube, U. (2007) Buellia . In Lichen Flora of the Greater Sonoran Desert Region. Vol. 3 (T. H. Nash III, C. Gries & F. Bungartz, eds): 113179. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Bungartz, F., Lücking, R. & Aptroot, A. (2009) The lichen family Graphidaceae in the Galapagos Islands. Nova Hedwigia 90: 144.Google Scholar
Bungartz, F., Ziemmeck, F., Yánez-Ayabaca Ayabaca, A., Nugra, F. & Aptroot, A. (2011 a) CDF Checklist of Galapagos Lichenized Fungi. In Charles Darwin Foundation Galápagos Species Checklist (F. Bungartz, H. Herrera, P. Jaramillo, N. Tirado, G. Jímenez-Uzcategui, D. Ruiz, A. Guézou & F. Ziemmeck, eds): http://www.darwinfoundation.org/datazone/checklists/true-fungi/lichens/. Puerto Ayora: Charles Darwin Foundation. Last updated 3 December 2013.Google Scholar
Bungartz, F., Grube, U., Elix, J. A., Heininger, C. & Mayrhofer, H. (2011 b) A taxonomic revision of the Buellia subalbula-group in the Southern Hemisphere using fluorescence microscopy. Bibliotheca Lichenologica 106: 2139.Google Scholar
Castello, M. (2003) Lichens of the Terra Nova Bay area, northern Victoria Land (continental Antarctica). Studia Geobotanica 22: 354.Google Scholar
Castello, M. & Nimis, P. L. (1995) A critical revision of Antarctic lichens described by C. W. Dodge. Bibliotheca Lichenologica 57: 7192.Google Scholar
Coppins, B. J. (2002) Checklist of Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Crespo, A., Blanco, O., Llimona, X., Ferencová, Z. & Hawksworth, D. L. (2004) Coscinocladium, an overlooked endemic and monotypic Mediterranean lichen genus of Physciaceae, reinstated by molecular phylogenetic analysis. Taxon 53: 405414.Google Scholar
Dodge, C. W. (1966) New lichens from Chile. Nova Hedwigia 12: 307352.Google Scholar
Dodge, C. W. (1968) Lichenological notes on the flora of the Antarctic continent and the subantarctic islands. VII and VIII. Nova Hedwigia 15: 285332.Google Scholar
Dodge, C. W. (1971) Some lichens of tropical Africa. V. Lecanoraceae to Physciaceae . Beihefte zur Nova Hedwigia 38: 1225.Google Scholar
Dodge, C. W. (1973) Lichen Flora of the Antarctic Continent and Adjacent Islands. Canaan: Phoenix Publishing.Google Scholar
Elix, J. A. (2011) Australian Physciaceae (Lichenized Ascomycota). Australian Biological Resources Study, Canberra. Version 18 October 2011. http://www.anbg.gov.au/abrs/lichenlist/PHYSCIACEAE.html Google Scholar
Elix, J. A. (2015) A new species of the lichen genus Monerolechia (Ascomycota, Physciaceae) from Australia. Telopea 18: 9195.Google Scholar
Elix, J. A. & Kantvilas, G. (2015) New taxa and new records of crustose lichens in the family Physciaceae (Ascomycota) in Australia. Australasian Lichenology 76: 1622.Google Scholar
Elix, J. A. & McCarthy, P. M. (1998) Catalogue of the lichens of the smaller Pacific Islands. Bibliotheca Lichenologica 70: 1361.Google Scholar
Elix, J. A., Giralt, M. & Wardlaw, J. H. (2003) New chloro-depsides from the lichen Dimelaena radiata. Bibliotheca Lichenologica 86: 17.Google Scholar
Elix, J. A., Jenkins, G. A. & Lumbsch, H. T. (1988) Chemical variation in the lichen genus Diploicia (Ascomycotina). Mycotaxon 33: 457466.Google Scholar
Giralt, M. & Clerc, P. (2011) Tetramelas thiopolizus comb. nov. with a key to all known species of Tetramelas . Lichenologist 43: 417425.Google Scholar
Giralt, M. & van den Boom, P. P. G. (2011) The genus Buellia s.l. and some additional genera of Physciaceae in the Canary Islands. Nova Hedwigia 92: 2955.CrossRefGoogle Scholar
Giralt, M., van den Boom, P. P. G. & Elix, J. A. (2010) Endohyalina, the genus in the Physciaceae to accommodate the species of the Rinodina ericina-group. Mycological Progress 9: 3748.Google Scholar
Giralt, M., Bungartz, F. & Elix, J. A. (2011) The identity of Buellia sequax . Mycological Progress 10: 115119.Google Scholar
Hafellner, J., Mayrhofer, H. & Poelt, J. (1979) Die Gattungen der Flechtenfamilie Physciaceae. Herzogia 5: 3979.Google Scholar
Helms, G., Friedl, T. & Rambold, G. (2003) Phylogenetic relationships of the Physciaceae inferred from rDNA sequence data and selected phenotypic characters. Mycologia 95: 10781099.CrossRefGoogle ScholarPubMed
Huneck, S., Schmidt, J. & Mayrhofer, H. (1989) Zur Chemie der Flechte Phaeorrhiza nimbosa . Herzogia 8: 137139.Google Scholar
Imshaug, H. A. (1955) The lichen genus Buellia in Central America. Bryologist 58: 277287.Google Scholar
Kalb, K. (1987) Brasilianische Flechten. 1. Die Gattung Pyxine . Bibliotheca Lichenologica 24: 189.Google Scholar
Kalb, K. (2002) Pyxine . In Lichen Flora of the Greater Sonoran Desert Region. Vol. I (T. H. Nash III, B. D. Ryan, C. Gries & F. Bungartz, eds): 437441. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Kalb, K. (2004) New or otherwise interesting lichens II. Bibliotheca Lichenologica 88: 301329.Google Scholar
Lamb, I. M. (1968) Antarctic lichens. II. The genera Buellia and Rinodina . British Antarctic Survey Scientific Reports 61: 1129.Google Scholar
Leuckert, C., Kümmerling, H. & Wirth, V. (1995) Chemotaxonomy of Lepraria Ach. and Leproloma Nyl. ex Crombie, with particular reference to Central Europe. Bibliotheca Lichenologica 58: 245259.Google Scholar
Lücking, R., Tehler, A., Bungartz, F., Rivaz Plata, E. & Lumbsch, H. T. (2013) Journey from the West: did tropical Graphidaceae (lichenized Ascomycota: Ostropales) evolve from a saxicolous ancestor along the American Pacific coast? American Journal of Botany 100: 213.CrossRefGoogle ScholarPubMed
Magnusson, A. H. (1940) Lichens from central Asia I. In Reports from the Scientific Expedition to the North-western Provinces of China under the Leadership of Dr Sven Hedin (the Sino-Swedish Expedition) (S. Hedin, ed.):1168. Stockholm: Aktiebolaget Thule.Google Scholar
Magnusson, A. H. (1955) Key to saxicolous Buellia species, mainly from South America. Arkiv för Botanik 3(9): 205221.Google Scholar
Marbach, B. (2000) Corticole und lignicole Arten der Flechtengattung Buellia sensu lato in den Subtropen und Tropen. Bibliotheca Lichenologica 74: 1384.Google Scholar
Matzer, M., Mayrhofer, H. & Elix, J. A. (1997 a) Australiaena streimannii, a new genus and species in the Physciaceae from tropical Australasia. Lichenologist 29: 3544.CrossRefGoogle Scholar
Matzer, M., Mayrhofer, H. & Rambold, G. (1997 b) Diploicia africana comb. nov. (lichenized Ascomycetes, Physciaceae), an endemic species from the Cape Province (South Africa). Nordic Journal of Botany 17: 433438.CrossRefGoogle Scholar
Mayrhofer, H. & Poelt, J. (1978) Phaeorrhiza, eine neue Gattung der Physciaceae (Lichenes). Nova Hedwigia 30: 781798.Google Scholar
Mayrhofer, H., Sheard, J. W. & Matzer, M. (1992 a) Mobergia (Physciaceae, lichenized Ascomycetes), a new genus endemic to western North America. Bryologist 95: 436442.Google Scholar
Mayrhofer, H., Scheidegger, C. & Sheard, J. W. (1992 b) On the taxonomy of five saxicolous species of the genus Rinodina (lichenized Ascomycetes). Nordic Journal of Botany 12: 451459.Google Scholar
Meyer, B. & Printzen, C. (2000) Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32: 571583.Google Scholar
Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C. et al. (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132168.CrossRefGoogle ScholarPubMed
Molina, M. C., Crespo, A., Blanco, O., Hladun, N. & Hawksworth, D. L. (2002) Molecular phylogeny and status of Diploicia and Diplotomma, with observations on Diploicia subcanescens and Diplotomma rivas-martinezii . Lichenologist 34: 509519.CrossRefGoogle Scholar
Nordin, A. (2000) Taxonomy and phylogeny of Buellia species with pluriseptate spores (Lecanorales, Ascomycotina). Symbolae Botanicae Upsalienses 33(1): 1117.Google Scholar
Obermayer, W., Blaha, J. & Mayrhofer, H. (2004) Buellia centralis and chemotypes of Dimelaena oreina in Tibet and other Central-Asian regions. Symbolae Botanicae Upsalienses 34(1): 327342.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Orange, A., James, P. W. & White, F. J. (2010) Microchemical Methods for the Identification of Lichens, Second Edition with Additions and Corrections. London: British Lichen Society.Google Scholar
Poelt, J. & Sulzer, M. (1974) Die Erdflechte Buellia epigaea, eine Sammelart. Nova Hedwigia 25: 173194.Google Scholar
Poelt, J. & Vězda, A. (1981) Bestimmungsschlüssel europäischer Flechten. Ergänzungsheft II. Bibliotheca Lichenologica 16: 1390.Google Scholar
Rambold, G., Mayrhofer, H. & Matzer, M. (1994) On the ascus types in the Physciaceae (Lecanorales). Plant Systematics and Evolution 192: 3140.Google Scholar
Saag, L., Saag, A. & Randlane, T. (2009) World survey of the genus Lepraria (Stereocaulaceae, lichenized Ascomycota). Lichenologist 41: 2560.Google Scholar
Şenkardeşler, A. (2010) Additions and corrections of types in the genus Buellia s. lat. (Physciaceae) described by J. Steiner. Lichenologist 42: 439448.Google Scholar
Şenkardeşler, A., Lökös, L. & Fuat Calba, O. (2011) (1997) Proposal to conserve the name Buellia subcanescens (Diploicia subcanescens) against B. leptina (lichenized Ascomycota, Caliciaceae). Taxon 60: 587.Google Scholar
Sheard, J. W. (2004) Rinodina . In Lichen Flora of the Greater Sonoran Desert Region. Vol. 2 (T. H. Nash III, B. D. Ryan, P. Diederich, C. Gries & F. Bungartz, eds): 467502. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Sheard, J. W. (2010) The Lichen Genus Rinodina (Lecanoromycetidae, Physciaceae) in North America, North of Mexico. Ottawa: National Research Council of Canada (NRC) Research Press.Google Scholar
Snell, H. M., Stone, P. A. & Snell, H. L. (1995) Geographical characteristics of the Galapagos Islands. Noticias de Galápagos 55: 1824.Google Scholar
Snell, H. M., Stone, P. A. & Snell, H. L. (1996) A summary of geographical characteristics of the Galapagos Islands. Journal of Biogeography 23: 619624.Google Scholar
Steiner, J. (1911) Adnotationes lichenographicae. Österreichische Botanische Zeitschrift 61: 177183, 223–225 (1–8).Google Scholar
Swinscow, T. D. V. & Krog, H. (1978) The genus Dirinaria in East Africa. Norwegian Journal of Botany 25: 157168.Google Scholar
Szatala, O. (1956) Neue Flechten V. Annales Historico-Naturales Musei Nationalis Hungarici, ser. nov 7: 271282.Google Scholar
Tavares, C. N. (1947) Notes Lichénologiques VI. Brotéria 16: 145157.Google Scholar
Tehler, A., Irestedt, M., Bungartz, F. & Wedin, M. (2009) Evolution and reproduction modes in the Roccella galapagoensis aggregate (Roccellaceae, Arthoniales). Taxon 58: 438456.Google Scholar
Trueman, M. & d’Ozouville, N. (2010) Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Research 67: 2637.Google Scholar
Tuckerman, E. (1882) A Synopsis of the North American Lichens. Part I, comprising the Parmeliacei, Cladoniei and Coenogoniei. Boston: S. F. Cassino.Google Scholar
Tye, A. & Francisco-Ortega, J. (2011) Origins and evolution of Galapagos endemic vascular plants. In The Biology of Island Floras (D. Bramwell & J. Caujapé-Castells, eds): 89153. Cambridge: Cambridge University Press.Google Scholar
Tye, A., Snell, H. L., Peck, S. B. & Adsersen, H. (2002) Outstanding terrestrial features of the Galapagos Archipelago. In A Biodiversity Vision for the Galapagos Islands (R. Bensted-Smith, ed.): 2535. Puerto Ayora: Charles Darwin Foundation and World Wildlife Fund.Google Scholar
Weber, W. A. (1986) The lichen flora of the Galapagos Islands, Ecuador. Mycotaxon 27: 451497.Google Scholar
Weber, W. A., Gradstein, S. R., Lanier, J. & Sipman, H. J. M. (1977) Bryophytes and lichens of the Galapagos Islands. Noticias de Galápagos 26: 711.Google Scholar
Wedin, M., Baloch, E. & Grube, M. (2002) Parsimony analyses of mtSSU and nITS rDNA sequences reveal the natural relationships of the lichen families Physciaceae and Caliciaceae . Taxon 51: 655660.Google Scholar