Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T15:53:18.818Z Has data issue: false hasContentIssue false

Phylogenetic relationships of the neuropogonoid core group in the genus Usnea(Ascomycota: Parmeliaceae)

Published online by Cambridge University Press:  05 October 2011

H.Thorsten LUMBSCH
Affiliation:
The Field Museum, Department of Botany, 1400 S Lake Shore Drive, Chicago, IL 60605, USA. Email: tlumbsch@fieldmuseum.org
Nora WIRTZ
Affiliation:
11 Grosvenor Mount, Leeds LS6 2DX, UK.

Abstract

Species of Usnea with black pigmentation in the cortex and dark apothecial discs are informally referred to as neuropogonoid lichens. Here we studied the phylogenetic relationships of the core group of neuropogonoid lichens using DNA sequence data of three loci: nuclear ITS and IGS rDNA and RPB1. Maximum likelihood and Bayesian analyses revealed monophyly of 11 neuropogonoid species, with U. ciliata and U. subcapillaris forming a separate lineage. The backbone of the phylogeny of the core group was not resolved with statistical confidence, but relationships of groups of two to three species received strong support (U. acromelana +U. aurantiaco-atra; U. messutiae+U. pallidocarpa; U. sphacelata+U. subantarctica+U. trachycarpa; U. lambii+U. perpusilla+U. ushuaiensis). The new combination U. lambii (Imshaug) Wirtz & Lumbsch comb. nov. is made and U. messutiae Wirtz & Lumbsch sp. nov. is described.

Type
Research Article
Copyright
Copyright © British Lichen Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguileta, G., Marthey, S., Chiapello, H., Lebrun, M. H., Rodolphe, F., Fournier, E., Gendrault-Jacquemard, A. & Giraud, T. (2008) Assessing the performance of single-copy genes for recovering robust phylogenies. Systematic Biology 57: 613627.CrossRefGoogle ScholarPubMed
Arup, U., Ekman, S., Lindblom, L. & Mattsson, J.-E. (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25: 6171.CrossRefGoogle Scholar
Crespo, A. & Lumbsch, H. T. (2010) Cryptic species in lichen forming fungi. IMA Fungus 1: 167170.Google Scholar
Crespo, A. & Pérez-Ortega, S. (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid 66: 7181.CrossRefGoogle Scholar
Elix, J. A., Wirtz, N. & Lumbsch, H. T. (2007) Studies on the chemistry of some Usnea species of the Neuropogon group (Lecanorales, Ascomycota). Nova Hedwigia 85: 491501.CrossRefGoogle Scholar
Feige, G. B., Lumbsch, H. T., Huneck, S. & Elix, J. A. (1993) Identification of lichen products by a standardized high-performance liquid chromatographic method. Journal of Chromatography A 646: 417427.CrossRefGoogle Scholar
Felsenstein, J. (1985) Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39: 783791.Google Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.CrossRefGoogle ScholarPubMed
Lumbsch, H. T., Ahti, T., Altermann, S., Amo, G., Aptroot, A., Arup, U., Barcenas Peña, A., Bawingan, P. A., Benatti, M. N., Betancourt, L. et al. , (2011) One hundred new species of lichenized fungi: a signature of undiscovered global diversity. Phytotaxa 18: 1127.CrossRefGoogle Scholar
Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2007) AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581583.Google Scholar
Page, R. D. M. (1996) Treeview: an application to display phylogenetic trees on personal computers. Computer Applied Biosciences 12: 357358.Google Scholar
Rodriguez, F., Oliver, J. L., Marin, A. & Medina, J. R. (1990) The general stochastic-model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.CrossRefGoogle ScholarPubMed
Schmitt, I., Crespo, A., Divakar, P. K., Fankhauser, J., Herman-Sackett, E., Nelsen, M. P., Nelson, N. A., Rivas Plata, E., Shimp, A. D., Widhelm, T. & Lumbsch, H. T. (2009) New primers for single-copy protein-coding genes for fungal systematics. Persoonia 23: 3540.CrossRefGoogle Scholar
Seymour, F. A., Crittenden, P. D., Wirtz, N., Ovstedal, D. O., Dyer, P. S. & Lumbsch, H. T. (2007) Phylogenetic and morphological analysis of Antarctic lichen-forming Usnea species in the group Neuropogon. Antarctic Science 19: 7182.CrossRefGoogle Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) CLUSTAL-W – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 46734680.Google Scholar
Wirtz, N., Printzen, C., Sancho, L. G. & Lumbsch, H. T. (2006) The phylogeny and classification of Neuropogon and Usnea (Parmeliaceae, Ascomycota) revisited. Taxon 55: 367376.CrossRefGoogle Scholar
Wirtz, N., Printzen, C. & Lumbsch, H. T. (2008) The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research 112: 472484.Google Scholar
Zwickl, D. J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph. D. Thesis, University of Texas at Austin.Google Scholar