Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:58:04.527Z Has data issue: false hasContentIssue false

Sporastatia crassulata, a new species from the Altai Mountains with a key to Sporastatia and remarks on some additional species

Published online by Cambridge University Press:  23 July 2018

Lidia S. YAKOVCHENKO
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok 690022, Russian Federation
Evgeny A. DAVYDOV
Affiliation:
Altai State University - Herbarium (ALTB), Lenin Prosp. 61, Barnaul 656049, Russian Federation; Tigirek State Nature Reserve, Nikitina Str. 111, Barnaul 656043, Russian Federation. Email: eadavydov@yandex.ru

Abstract

Sporastatia crassulata Yakovchenko & Davydov sp. nov. is described and a phylogenetic analysis (mtSSU) is presented, confirming its distinctness and indicating a sister relationship with S. testudinea. The species is unique among Sporastatia species in having a distinctly squamulose, thick, uneven thallus composed of convex, rounded squamules irregularly ascending in the central part of the thallus. The new combination Sporastatia karakorina (Poelt & Obermayer) Davydov & Yakovchenko is proposed. The type specimen of S. subasiatica was examined. A key to the six species of Sporastatia is given. Mountainous Central Asia appears to be the centre of species diversity and endemism for Sporastatia.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bendiksby, M. & Timdal, E. (2013) Molecular phylogenetics and taxonomy of Hypocenomyce sensu lato (Ascomycota: Lecanoromycetes): extreme polyphyly and morphological/ecological convergence. Taxon 62: 940956.CrossRefGoogle Scholar
Culberson, C. F. & Kristinsson, H. D. (1970) A standardized method for the identification of lichen products. Journal of Chromatography 46: 8593.Google Scholar
Davydov, E. A. & Printzen, C. (2012) Rare and noteworthy boreal lichens from the Altai Mountains (South Siberia, Russia). Bryologist 115: 6173.Google Scholar
Davydov, E. A. & Yakovchenko, L. S. (2017) Rhizocarpon smaragdulum, a new monosporic yellow-thalline species and some additional species of the genus Rhizocarpon from the Altai Mounaints (Siberia). Lichenologist 49: 457466.CrossRefGoogle Scholar
Davydov, E. A., Konoreva, L. A., Andreev, M. P., Zhdanov, I. S. & Dobrysh, A. A. (2012) Additions to the lichen biota of Altai Mountains. IV. Turczaninowia 15(3): 2336.Google Scholar
Davydov, E. A., Pérez-Ortega, S. & Printzen, C. (2017 a) Pleomorphy in lichens possessing thalloconidia: molecular data do not support the separation of Umbilicaria decussata and U. polaris as separate species. Fritschiana (Graz) 85: 1819.Google Scholar
Davydov, E. A., Peršoh, D. & Rambold, G. (2017 b) Umbilicariaceae (lichenized Ascomycota) – trait evolution and a new generic concept. Taxon 66: 12821303.Google Scholar
Dodge, C. W. (1970) Lichenological notes on the flora of the Antarctic continent and the subantarctic islands IX–XI. Nova Hedwigia 19: 439502.Google Scholar
Favero-Longo, S. E., Castelli, D., Salvadori, O., Belluso, E. & Piervittori, R. (2005) Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum gr. and Sporastatia testudinea on serpentinized ultramafic rocks in an alpine environment. International Biodeterioration and Biodegradation 56: 1727.Google Scholar
Gilbert, O. L. & Coppins, B. J. (2009) Sporastatia Massal. In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 850 London: British Lichen Society.Google Scholar
Golubkova, N. S. (1973) Species lichenum pro flora URSS novae. Novitates Systematicae Plantarum non Vascularium 10: 200206 [In Russian].Google Scholar
Golubkova, N. S. (1982) Genus Sporastatia Massal. in URSS. Novitates Systematicae Plantarum non Vascularium 19: 131143 [In Russian].Google Scholar
Grube, M. & Poelt, J. (1993) Beiträge zur Kenntnis der Flechtenflora des Himalaya X. Sporastatia testudinea, ihre Variabilität, ihre Ökologie und ihre Parasiten in Hochasien. Fragmenta Floristica et Geobotanica Supplementum 2: 113122.Google Scholar
Haeberli, W., King, L. & Flotron, A. (1979) Surface movement and lichen-cover studies at the active rock glacier near the Grubengletscher, Wallis, Swiss Alps. Arctic and Alpine Research 11: 421441.Google Scholar
Hafellner, J., Obermayer, W. & Tretiach, M. (2014) Miriquidica invadens, an obligate youth parasite on Sporastatia, with remarks and a key to species of the M. griseoatra group. Lichenologist 46: 303331.Google Scholar
Hasenhüttl, G. & Poelt, J. (1978) Über die Brutkorner bei der Flechtengattung Umbilicaria. Berichte der Deutschen Botanischen Gesellschaft 91: 275296.Google Scholar
Hertel, H. & Rambold, G. (1988) Lecidea mosigii (Koerb.) Anzi – eine Art der Gattung Orphniospora Koerb. (Fuscideaceae, Teloschistales). Mitteilungen der Botanischen Staatssammlung München 27: 111123.Google Scholar
Hestmark, G. (1990) Thalloconidia in the genus Umbilicaria . Nordic Journal of Botany 9: 547574.CrossRefGoogle Scholar
Hestmark, G. (1991) Teleomorph-anamorph relationships in Umbilicaria I. Making the connections. Lichenologist 23: 343359.Google Scholar
Larget, B. & Shimon, D. (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16: 750759.Google Scholar
Magnusson, A. H. (1936) Acarosporaceae und Thelocarpaceae . In Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Vol. 9, Zweite Auflage (A. Zahlbruckner, ed.): 1318. Leipzig: Akademische Verlagsgesellschaft M. B. H.Google Scholar
Massalongo, A. B. (1854) Geneacaena Lichenum ab A. Prof. Massalongo Noviter Proposita ac Descripta. Verona: Typis Ramanzini.Google Scholar
Meyer, B. & Printzen, C. (2000) Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32: 571583.CrossRefGoogle Scholar
Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C. et al. (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132168.Google Scholar
Poelt, J. (1990) Parasitische Arten der Flechtengattung Rhizocarpon: eine weitere Übersicht. Mitteilungen der Botanische Staatssammlung München 29: 515538.Google Scholar
Poelt, J. & Obermayer, W. (1990) Über Thallosporen bei einigen Krustenflechten. Herzogia 8: 273288.Google Scholar
Rambold, G. & Triebel, D. (1992) The inter-lecanoralean associations. Bibliotheca Lichenologica 48: 1201.Google Scholar
Ronquist, R., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.Google Scholar
Silvestro, D. & Michalak, I. (2012) RaxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution 12: 335337.CrossRefGoogle Scholar
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 13121313.Google Scholar
Thomson, J. W. (1997) American Arctic Lichens. 2. The Microlichens. Madison: University of Wisconsin Press.Google Scholar
Wijayawardene, N. N., Hyde, K. D., Rajeshkumar, K. C., Hawksworth, D. L., Madrid, H., Kirk, P. M., Braun, U., Singh, R. V., Crous, P. W., Kukwa, M. et al. (2017) Notes for genera: Ascomycota. Fungal Diversity 86: 1594.Google Scholar