Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T15:36:20.202Z Has data issue: false hasContentIssue false

Using genetic distances in addition to ITS molecular phylogeny to identify potential species in the Parmotrema reticulatum complex: a case study

Published online by Cambridge University Press:  05 October 2011

Ruth DEL-PRADO
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, Madrid 28040, Spain. Email: rdelprado@farm.ucm.es
Pradeep K. DIVAKAR
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, Madrid 28040, Spain. Email: rdelprado@farm.ucm.es
Ana CRESPO
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, Madrid 28040, Spain. Email: rdelprado@farm.ucm.es

Abstract

We used a genetic distance approach in conjunction with molecular phylogeny to establish species boundaries and detect cryptic lineages in the Parmotrema reticulatumP. pseudoreticulatum complex. The phylogeny of specimens from a broad geographic distribution was reconstructed from the internal transcribed spacer region. Pairwise genetic distances were calculated and compared to an intraspecific range defined for the parmelioid lichens to circumscribe species-level groups. Our results showed that P. reticulatum and P. pseudoreticulatum are polyphyletic, being comprised of at least seven well-supported lineages. In contrast, the genetic distance approach revealed ten cryptic lineages within the P. reticulatumP. pseudoreticulatum complex. Neither morphology nor geography was conclusive in attempting to corroborate these genetic lineages. However FST indices suggest significant genetic differentiation between these lineages. Our results suggest that the morphology-based circumscriptions underestimated species in Parmotrema and that, in some cases, genetic distances may be used as an additional tool to determine species boundaries in morphologically cryptic species complexes. The most significant contribution of the present study is the application of a fast and accurate method to identify problematic groups and candidate species using the ITS locus with a genetic distances approach.

Type
Research Article
Copyright
Copyright © British Lichen Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argüello, A., Del-Prado, R., Cubas, P. & Crespo, A. (2007) Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biological Journal of the Linnean Society 91: 455467.CrossRefGoogle Scholar
Clauzade, G. & Roux, C. (1986) [‘1985’] Likenoj de Okcidenta Europo. Ilustrita Determinlibro. Bulletin de la Société Botanique du Centre-Ouest, Nouvelle Séries, Numero Special 7: 1893.Google Scholar
Crespo, A. & Lumbsch, H. T. (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1: 167170.CrossRefGoogle ScholarPubMed
Crespo, A. & Pérez-Ortega, S. (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid 66: 7181.CrossRefGoogle Scholar
Crespo, A., Blanco, O. & Hawksworth, D. L. (2001) The potential of mitochondrial DNA for establishing phylogeny and stabilising generic concepts in the parmelioid lichens. Taxon 50: 807819.CrossRefGoogle Scholar
Crespo, A., Kauff, F., Divakar, P. K., Del-Prado, R., Pérez-Ortega, S., Amo de Paz, G., Ferencova, Z., Blanco, O., Roca-Valiente, B., Núñez-Zapata, J. et al. (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59: 17351753.CrossRefGoogle Scholar
Culberson, C. F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography 72: 113125.CrossRefGoogle ScholarPubMed
Del-Prado, R., Cubas, P., Lumbsch, H. T., Divakar, P. K., Blanco, O., Amo de Paz, G., Molina, M. C. & Crespo, A. (2010) Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Molecular Phylogenetics and Evolution 56: 125133.CrossRefGoogle ScholarPubMed
De Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology 56: 879886.CrossRefGoogle ScholarPubMed
Divakar, P. K. & Upreti, D. K. (2005) Parmelioid Lichens in India (A Revisionary Study). Dehra Dun: Bishen Singh Mahendra Pal Singh.Google Scholar
Divakar, P. K., Upreti, D. K. & Elix, J. A. (2001) New species and new records in the lichen family Parmeliaceae (Ascomycotina) from India. Mycotaxon 80: 355362.Google Scholar
Divakar, P. K., Molina, M. C., Lumbsch, H. T. & Crespo, A. (2005a) Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. Lichenologist 37: 3746.CrossRefGoogle Scholar
Divakar, P. K., Blanco, O., Hawksworth, D. L. & Crespo, A. (2005b) Molecular phylogenetic studies on the Parmotrema reticulatum (syn. Rimelia reticulata) complex, including the confirmation of P. pseudoreticulatum. Lichenologist 37: 5565.CrossRefGoogle Scholar
Divakar, P. K., Figueras, G., Hladun, N. & Crespo, A. (2010a) Morphological versus phylogenetic species: an example from Melanelixia glabra (Parmeliaceae, Ascomycota). Fungal Diversity 42: 4755.CrossRefGoogle Scholar
Divakar, P. K., Cubas, P., Blanco, O., Del-Prado, R., Núñez-Zapata, J., Roca-Valiente, B., Lumbsch, H. T & Crespo, A. (2010b) An overview on hidden diversity in lichens: Parmeliaceae. <imc9.info/prog_sig3_detail_divakar.htm>Google Scholar
Elix, J. A. (1994a) Rimelia. Flora of Australia 55: 186188.Google Scholar
Elix, J. A. (1994b) Lichens, Lecanorales 2, Parmeliaceae. Flora Australia 55: 1360.Google Scholar
Elix, J. A. & Ernst-Russell, K. D. (1993) A Catalogue of Standardized Thin Layer Chromatographic Data and Biosynthetic Relationships for Lichen Substances, 2nd edn. Canberra: Australian National University.Google Scholar
Elix, J. A., Corush, J. & Lumbsch, H.T. (2009) Triterpene chemosyndromes and subtle morphological characters characterise lineages in the Physcia aipolia group in Australia (Ascomycota). Systematics and Biodiversity 7: 479487.CrossRefGoogle Scholar
Fazekas, A. J., Kesanakurti, P. R., Burgess, K. S., Percy, D. M., Graham, S. W., Barrett, S. C. H., Newmaster, S. G., Hajibabaei, M. & Husband, B. C. (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular Ecology Resources 9: 130139.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.CrossRefGoogle ScholarPubMed
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Grube, M. & Kroken, S. (2000) Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycological Research 104: 12841294.CrossRefGoogle Scholar
Hale, M. E. (1965) A monograph of Parmelia subgenus Amphigymnia. Contributions from the United States National Herbarium 36: 193358.Google Scholar
Hale, B. W. & DePriest, P. T. (1999) Mason E. Hale's list of epithets in the parmelioid genera. Bryologist 102: 462544.CrossRefGoogle Scholar
Hale, M. E. & Fletcher, A. (1990) Rimelia Hale & Fletcher, a new lichen genus (Ascomycotina: Parmeliaceae). Bryologist 93: 2329.CrossRefGoogle Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B 270: 313321.CrossRefGoogle ScholarPubMed
Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B 270: S96S99.CrossRefGoogle ScholarPubMed
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the Natinal Academy of Sciences of the United States of America 101(41): 1481214817.Google ScholarPubMed
Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S. & Francis, C. M. (2004b) Identification of birds through DNA barcodes. PLoS Biology 3: e422.Google Scholar
Hebert, P. D. N., deWaard, J. R. & Landry, J. F. (2010) DNA barcodes for 1/1000 of the animal kingdom. Biology Letters 6: 359362.CrossRefGoogle ScholarPubMed
Hey, J. & Wakeley, J. (1997) A coalescent estimator of the population recombination rate. Genetics 145: 833846.CrossRefGoogle ScholarPubMed
Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., Van der Bank, M., Chase, M. W., Cowan, R. S., Erickson, D. L., Fazekas, A. J. et al. (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106: 1279412797.Google Scholar
Holsinger, K. E. & Weir, B. S. (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nature Review Genetics 10: 639650.CrossRefGoogle ScholarPubMed
Hudson, R. R., Slatkin, M. & Maddison, W. P. (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132: 583589.CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P. & Ronquist, F. (2001) MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.CrossRefGoogle ScholarPubMed
Kelly, L. J., Hollingsworth, P. M., Coppins, B. J., Ellis, C .J., Harrold, P., Tosh, J. & Yahr, R. (2011) DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytologist in press (doi: 10.1111/j.1469-8137.2011.03677.x).CrossRefGoogle Scholar
Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. (2005) Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102: 83698374.CrossRefGoogle ScholarPubMed
Krog, H. & Swinscow, T. D. V. (1981) Parmelia subgenus Amphigymnia (lichens) in East Africa. Bulletin of the British Museum (Natural History), Botany Series 9: 143231.Google Scholar
Kroken, S. & Taylor, J. W. (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93: 3853.CrossRefGoogle Scholar
Kurokawa, S. (1991) Japanese species and genera of Parmeliaceae. Journal of Japanese Botany 66: 152159.Google Scholar
Kurokawa, S. (2003) Checklist of Japanese Lichens.Tokyo: National Science Museum.Google Scholar
Larena, I., Salazar, O., González, V., Julián, M. C. & Rubio, V. (1999) Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. Journal of Biotechnology 75: 187194.CrossRefGoogle ScholarPubMed
Lefébure, T., Douady, C. J., Gouy, M. & Gibert, J. (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40: 435447.CrossRefGoogle ScholarPubMed
Liu, K., Raghavan, S., Nelesen, S., Linder, C. R. & Warnow, T. (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324: 15611564.CrossRefGoogle ScholarPubMed
Liu, J., Moller, M., Gao, L. M., Zhang, D. Q. & Li, D. Z. (2011) DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Molecular Ecology Resources 11: 89100.CrossRefGoogle ScholarPubMed
Llimona, X. & Hladun, N. L. (2001) Checklist of the lichens and lichenicolous fungi of the Iberian Peninsula and Balearic Islands. Bocconea 14: 1581.Google Scholar
Lohtander, K., Myllys, L., Sundin, R., Källersjö, M. & Tehler, A. (1998) The species pair concept in the lichen Dendrographa leucophaea (Arthoniales): analyses based on ITS sequences. Bryologist 101: 404411.CrossRefGoogle Scholar
Lumbsch, H. T. (2002) Analysis of phenolic products in lichens for identification and taxonomy. In Protocols in Lichenology. Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring (Kranner, I., Beckett, R. P. & Varma, A. K., eds): 281295. Berlin: Springer.Google Scholar
Meyer, C. P. & Paulay, G. (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3: e422.CrossRefGoogle ScholarPubMed
Molina, M. C., Crespo, A., Blanco, O., Lumbsch, H. T. & Hawksworth, D. L. (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and ß-tubulin sequences. Lichenologist 36: 3754.CrossRefGoogle Scholar
Molina, M. C., Del-Prado, R., Divakar, P. K., Sánchez-Mata, D. & Crespo, A. (2011) Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Organism Diversity and Evolution, (in press).CrossRefGoogle Scholar
Moon, K. H., Kurokawa, S. & Kashiwadani, H. (2000) A list of Thailand species of Parmelia (sens. lat.) preserved in the National Science Museum. In Proceedings of the First and Second Symposia on Collection Building and Natural History Studies in Asia (K., Matsuura, ed): 97106. Tokyo: National Science Museum Monographs.Google Scholar
Moon, K. H., Kurokawa, S. & Kashiwadani, H. (2001) The genus Rimelia (lichens) from the Hawaiian Islands. Journal of Japanese Botany 76: 321328.Google Scholar
Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. (1999) Sequence insertions and ITS data provide congruent information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Molecular Phylogenetics and Evolution 12: 295309.CrossRefGoogle Scholar
Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N. & Larsson, K. (2008) Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics 4: 193201.CrossRefGoogle ScholarPubMed
Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2007) AWTY (Are we there yet?): A system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581583.CrossRefGoogle Scholar
Posada, D. (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.CrossRefGoogle ScholarPubMed
Rambaut, A. & Drummond, A. J. (2003) Tracer [computer program]. Available from website http://tree.bio.ed.ac.uk/software/tracer/Google Scholar
Räsänen, A. V. (1944) Lichenes Novi I. Annales Botanici Societatis Zoologicae-Botanicae Fennicae “Vanamo” 20(3): 134.Google Scholar
Rodríguez, F., Oliver, J. F., Martín, A. & Medina, J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.CrossRefGoogle ScholarPubMed
Ross, K. G., Gotzek, D., Ascunce, M. S. & Shoemaker, D. D. (2010) Species delimitation: a case study in a problematic ant taxon. Systematic Biology 59: 162184.CrossRefGoogle Scholar
Seifert, K. A., Samson, R. A., deWaard, J. R., Houbraken, J., Levesque, C. A., Moncalvo, J.-M., Louis-Seize, G. & Hebert, P. D. N. (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences of the United States of America 104: 39013906.CrossRefGoogle ScholarPubMed
Simon, U. K. & Weiss, M (2008) Intragenomic variation of fungal ribosomal genes is higher than previously thought. Molecular Biology and Evolution 25: 22512254.CrossRefGoogle Scholar
Smith, M. E., Douhan, G. W. & Rizzo, D. M. (2007) Intra-specific and intra-sporocarp ITS variation of ectomycorrhizal fungi as assessed by rDNA sequencing of sporocarps and pooled ectomycorrhizal roots from a Quercus woodland. Mycorrhiza 18: 1522.CrossRefGoogle ScholarPubMed
Stamatakis, A., Ludwig, T. & Meier, H. (2005) RAxML-III: A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456463.CrossRefGoogle ScholarPubMed
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 57: 758771.CrossRefGoogle ScholarPubMed
Strimmer, K. & von Haeseler, A. (1997) Puzzle. Maximum Likelihood Analysis for Nucleotide, Amino Acid, and two-state Data. Version 4.0. Munich: University of Munich.Google Scholar
Swinscow, T. D. V & Krog, H. (1988) Macrolichens of East Africa. London: British Museum (Natural History).Google Scholar
Swofford, D. L. (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Tavares, C. N. (1945) Contribução para o estudo das Parmeliáceas Portuguesas. Portugaliae Acta Biologica, serie B. 1: 1210.Google Scholar
Taylor, T. (1836) Musci, hepaticae and lichens. In Flora Hibernica (Mackay, J.T., ed.) 2: 1156. Dublin: W. Curry.Google Scholar
Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S. & Fisher, M.C. (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 2132.CrossRefGoogle ScholarPubMed
Vialle, A., Feau, N., Allaire, M., Didukh, M., Martin, F., Moncalvo, J. M. & Hamelin, R. C. (2009) Evaluation of mitochondrial genes as DNA barcode for Basidiomycota. Molecular Ecology Resources 9 (suppl 1): 99113.CrossRefGoogle ScholarPubMed
Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. (2005) DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society, Biological Sciences 360: 18471857.CrossRefGoogle ScholarPubMed
Ward, R. D., Holmes, B. H. & O'Hara, T. D. (2008) DNA barcoding discriminates echinoderm species. Molecular Ecology Resources 8: 12021211.CrossRefGoogle ScholarPubMed
Wedin, M., Westberg, M., Crewe, A. T., Tehler, A. & Purvis, O.W. (2009) Species delimitation and evolution of metal bioaccumulation in the lichenized Acarospora smaragdula (ascomycota, fungi) complex. Cladistics 25: 161172.CrossRefGoogle ScholarPubMed
Zemlak, T. S., Ward, R. D., Connell, A. D., Holmes, B. H. & Hebert, P. D. N. (2009) DNA barcoding reveals overlooked marine fishes. Molecular Ecology Resources 9 (Suppl. 1): 237242.CrossRefGoogle ScholarPubMed