Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T21:49:41.857Z Has data issue: false hasContentIssue false

Arithmetic E8 Lattices with Maximal Galois Action

Published online by Cambridge University Press:  01 February 2010

Anthony Várilly-Alvarado
Affiliation:
Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA, varilly@math.berkeley.edu
David Zywina
Affiliation:
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA, zywina@math.upenn.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct explicit examples of E8 lattices occurring in arithmetic for which the natural Galois action is equal to the full group of automorphisms of the lattice, i.e., the Weyl group of E8. In particular, we give explicit elliptic curves over Q(t) whose Mordell-Weil lattices are isomorphic to E8 and have maximal Galois action.

Our main objects of study are del Pezzo surfaces of degree 1 over number fields. The geometric Picard group, considered as a lattice via the negative of the intersection pairing, contains a sublattice isomorphic to E8. We construct examples of such surfaces for which the action of Galois on the geometric Picard group is maximal.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2009

References

1.Berry, N., Dubickas, A., Elkies, N. D., Poonen, B. and Smyth, C., ‘The conjugate dimension of algebraic numbers’, Q. J. Math. 55 (2004) 237252.CrossRefGoogle Scholar
2.Bosma, W., Cannon, J., and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997) 235265.CrossRefGoogle Scholar
3.Bourbaki, N., Lie groups and Lie algebras (Springer, Berlin, 2002) Chapters 4–6.CrossRefGoogle Scholar
4.Carter, R. W., ‘Conjugacy classes in the Weyl group’, Compositio Math. 25 (1972) 159.Google Scholar
5.Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups (Oxford University Press, Eynsham, 1985).Google Scholar
6.Cragnolini, P. and Oliverio, P. A., ‘Lines on del Pezzo surfaces with K 2s = 1 in characteristic ≠ 2’, Comm. Algebra 27 (1999) 11971206.CrossRefGoogle Scholar
7.Demazure, M., ‘Surfaces de Del Pezzo II, III, IV, V’, Séminaire sur les singularités des surfaces, eds. Demazure, M., Pinkham, H. C. and Teissier, B., Lecture Notes in Math. 777 (Springer, Berlin, 1980) 2369.CrossRefGoogle Scholar
8.Dolgachev, I., ‘Weighted projective varieties’, Group actions and vector fields, Vancouver, B.C., 1981, Lecture Notes in Math. 956 (Springer, Berlin, 1982) 3471.CrossRefGoogle Scholar
9.Ekedahl, T., ‘An effective version of Hilbert's irreducibility theorem’, Séminaire de théorie des nombres, Paris 1988–1989, Progr. Math. 91 (Birk-häuser, Boston, 1990) 241249.Google Scholar
10.Erné, R., ‘Construction of a del Pezzo surface with maximal Galois action on its Picard group’, J. Pure Appl. Algebra 97 (1994) 1527.CrossRefGoogle Scholar
11.Fulton, W., Intersection Theory (Springer, Berlin, 1998).CrossRefGoogle Scholar
12.Hartshorne, R., Algebraic Geometry (Springer, New York, 1977).CrossRefGoogle Scholar
13.Jouve, F., Kowalski, E. and Zywina, D., ‘An explicit integral polynomial whose splitting field has Galois group W (E 8)’, J. Théor. Nombres Bordeaux, to appear.Google Scholar
14.Kollér, J., Rational curves on algebraic varieties (Springer, Berlin, 1996).CrossRefGoogle Scholar
15.Kollér, J., Smith, K. E. and Corti, A., Rational and nearly rational varieties (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
16.Manin, Yu. I.Cubic forms: Algebra, geometry, arithmetic (North-Holland, Amsterdam, 1986).Google Scholar
17.Shioda, T., ‘On the Mordell-Weil lattices’, Comment. Math. Univ. St. Paul. 39 (1990) 211240.Google Scholar
18.Shioda, T., ‘Theory of Mordell-Weil lattices’, Proceedings of the International Congress of Mathematicians, Kyoto, 1990, vol. I, II (Math. Soc. Japan, Tokyo, 1991) 473489.Google Scholar
19.Shioda, T., ‘Mordell-Weil lattices of type E 8 and deformation of singularities’, Prospects in complex geometry, Lecture Notes in Math. 1468 (Springer, Berlin, 1991) 177202.CrossRefGoogle Scholar
20.Silverman, J. H., Advanced topics in the arithmetic of elliptic curves (Springer, New York, 1994).CrossRefGoogle Scholar
21.Zarhin, Yu. G., ‘Del Pezzo surfaces of degree 1 and Jacobians’, Math. Ann. 340 (2008) 407435.CrossRefGoogle Scholar