Published online by Cambridge University Press: 01 August 2014
We propose a fast method of calculating the $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$-part of the class numbers in certain non-cyclotomic $\mathbb{Z}_p$-extensions of an imaginary quadratic field using elliptic units constructed by Siegel functions. We carried out practical calculations for $p=3$ and determined $\lambda $-invariants of such $\mathbb{Z}_3$-extensions which were not known in our previous paper.