Published online by Cambridge University Press: 01 February 2010
I give an algorithm for computing the full space of automor-phic forms for definite unitary groups over ℚ, and apply this to calculate the automorphic forms of level G(hat{Z}) and various small weights for an example of a rank 3 unitary group. This leads to some examples of various types of endoscopic lifting from automorphic forms for U1 × U1 × U1 and U1 × U2, and to an example of a non-endoscopic form of weight (3, 3) corresponding to a family of 3-dimensional irreducible ℓ-adic Galois representations. I also compute the 2-adic slopes of some automorphic forms with level structure at 2, giving evidence for the local constancy of the slopes.