Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T10:48:36.774Z Has data issue: false hasContentIssue false

Good families of Drinfeld modular curves

Published online by Cambridge University Press:  01 December 2015

Alp Bassa
Affiliation:
Boğaziçi University, Faculty of Arts and Sciences, Department of Mathematics, 34342 Bebek, İstanbul, Turkey email alp.bassa@boun.edu.tr
Peter Beelen
Affiliation:
Technical University of Denmark, Department of Applied Mathematics and Computer Science, Matematiktorvet 303B, 2800 Kgs. Lyngby, Denmark email pabe@dtu.dk
Nhut Nguyen
Affiliation:
Technical University of Denmark, Department of Applied Mathematics and Computer Science, Matematiktorvet 303B, 2800 Kgs. Lyngby, Denmark email nhngu@dtu.dk

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we investigate examples of good and optimal Drinfeld modular towers of function fields. Surprisingly, the optimality of these towers has not been investigated in full detail in the literature. We also give an algorithmic approach for obtaining explicit defining equations for some of these towers and, in particular, give a new explicit example of an optimal tower over a quadratic finite field.

Type
Research Article
Copyright
© The Author(s) 2015 

References

Bassa, A., Beelen, P. and Nguyen, N., ‘Good towers of function fields’, Algebraic curves and finite fields , Radon Series on Computational and Applied Mathematics (Walter de Gruyter, Berlin/Boston, 2014) 2340.Google Scholar
Elkies, N. D., ‘Explicit modular towers’, Proceedings of the Thirty-Fifth [1997] Annual Allerton Conference on Communication, Control and Computing (University of Illinois at Urbana-Champaign, 1998) 2332.Google Scholar
Elkies, N. D., ‘Explicit towers of Drinfeld modular curves’, European congress of mathematics , Progress In Mathematics 202 (Birkhäuser, Basel, 2001) 189198.Google Scholar
Garcia, A. and Stichtenoth, H., ‘On the asymptotic behaviour of some towers of function fields over finite fields’, J. Number Theory 61 (1996) no. 2, 248273.CrossRefGoogle Scholar
Gekeler, E.-U., ‘Drinfeld-Moduln und modulare Formen über rationalen Funktionenkörpern’, Bonner mathematische Schriften (Mathematischen Institut der Universität Bonn, 1979).Google Scholar
Gekeler, E.-U., Drinfeld modular curves , Lecture Notes in Mathematics 1231 (Springer, Heidelberg, 1986).CrossRefGoogle Scholar
Gekeler, E.-U., ‘Sur la géométrie de certaines algèbres de quaternions’, J. Théor. Nombres Bordeaux (2) 2 (1990) no. 1, 143153.CrossRefGoogle Scholar
Gekeler, E.-U., ‘Asymptotically optimal towers of curves over finite fields’, Algebra, arithmetic and geometry with applications (Springer, Heidelberg, 2004) 325336.Google Scholar
Goldschmidt, D. M., ‘Algebraic functions and projective curves’, Graduate Texts in Mathematics 215 (Springer, New York, 2003).Google Scholar
Goppa, V. D., ‘Codes on algebraic curves’, Sov. Math. Dokl. 24 (1981) no. 1, 170172.Google Scholar
Goss, D., Basic structures of function field arithmetic (Springer, Heidelberg, 1996).Google Scholar
Ihara, Y., ‘Some remarks on the number of rational points of algebraic curves over finite fields’, J. Fac. Sci. Univ. Tokyo 1A 28 (1982) 721724.Google Scholar
Schweizer, A., ‘Hyperelliptic Drinfeld modular curves’, Drinfeld modules, modular schemes and applications (World Scientific, Singapore, 1997) 330343.Google Scholar
Serre, J.-P., ‘Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini’, C. R. Acad. Sci. Paris 296 (1983) 397402.Google Scholar
Taelman, L., ‘Drinfeld modular curves have many points’, Preprint, 2006, arXiv:math/0602157 [math.AG].Google Scholar
Tsfasman, M. A., Vlâdut, S. G. and Zink, Th., ‘Modular curves, Shimura curves, and Goppa codes, better than Varshamov–Gilbert bound’, Math. Nachr. 109 (1982) no. 1, 2128.Google Scholar
Vlâdut, S. G. and Drinfel’d, V. G., ‘Number of points of an algebraic curve’, Funct. Anal. Appl. 17 (1983) no. 1, 5354.Google Scholar